|
|
@@ -389,18 +389,18 @@ an $S$ in $s$.
|
|
|
Dann ist $\Set{D_P F(e_1), D_P F(e_2)}$ eine Basis von $T_s S$.
|
|
|
\item Bzgl. der Basis $\Set{D_P F(e_1), D_P F(e_2)}$ hat das
|
|
|
Standardskalarprodukt aus \cref{bem:19.1a} die Darstellungsmatrix
|
|
|
- \[ I_S = \begin{pmatrix}
|
|
|
+ \begin{align*}
|
|
|
+ I_S &= \begin{pmatrix}
|
|
|
g_{1,1}(s) & g_{1,2}(s)\\
|
|
|
g_{1,2}(s) & g_{2,2}(s)
|
|
|
\end{pmatrix} =
|
|
|
\begin{pmatrix}
|
|
|
E(s) & F(s) \\
|
|
|
F(s) & G(s)
|
|
|
- \end{pmatrix}\]
|
|
|
- mit $\begin{aligned}
|
|
|
- g_{i,j} &= g_s(D_P F(e_i), D_P F(e_j))\\
|
|
|
- &= \langle \frac{\partial F}{\partial u_i} (p), \frac{\partial F}{\partial u_j} (p) \rangle \;\;\; i,j \in \Set{1,2}
|
|
|
- \end{aligned}$.\\
|
|
|
+ \end{pmatrix}\\
|
|
|
+ \text{mit } g_{i,j} &= g_s(D_P F(e_i), D_P F(e_j))\\
|
|
|
+ &= \langle \frac{\partial F}{\partial u_i} (p), \frac{\partial F}{\partial u_j} (p) \rangle \;\;\; i,j \in \Set{1,2}
|
|
|
+ \end{align*}
|
|
|
Die Matrix $I_S$ heißt \textbf{erste Fundamentalform}\xindex{Fundamentalform!erste}
|
|
|
von $S$ bzgl. der Parametrisierung $F$.
|
|
|
\item $g_{i,j}(s)$ ist eine differenzierbare Funktion von $s$.
|
|
|
@@ -408,7 +408,7 @@ an $S$ in $s$.
|
|
|
\end{bemerkung}
|
|
|
|
|
|
\begin{bemerkung}
|
|
|
- \[\det(I_S) = \| \frac{\partial F}{\partial u_1}(p) \times \frac{\partial F}{\partial u_2}(p)\|^2\]
|
|
|
+ \[\det(I_S) = \left \| \frac{\partial F}{\partial u_1}(p) \times \frac{\partial F}{\partial u_2}(p) \right \|^2\]
|
|
|
\end{bemerkung}
|
|
|
|
|
|
\begin{beweis}
|
|
|
@@ -424,12 +424,12 @@ an $S$ in $s$.
|
|
|
\begin{align*}
|
|
|
z_1 &= x_2 y_3 - x_3 - y_2\\
|
|
|
z_2 &= x_3 y_1 - x_1 y_3\\
|
|
|
- z_3 &= x_1 y_2 - x_2 y_1
|
|
|
+ z_3 &= x_1 y_2 - x_2 y_1\\
|
|
|
+ \Rightarrow \|\frac{\partial F}{\partial u_1} (p) \times \frac{\partial F}{\partial u_2} (p)\| &= z_1^2 + z_2^2 + z_3^2\\
|
|
|
\end{align*}
|
|
|
- $\Rightarrow \|\frac{\partial F}{\partial u_1} (p) \times \frac{\partial F}{\partial u_2} (p)\| = z_1^2 + z_2^2 + z_3^2$\\
|
|
|
\begin{align*}
|
|
|
\det(I_S) &= g_{1,1} g_{2,2} - g_{1,2}^2\\
|
|
|
- &= \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\rangle \langle \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}\rangle - \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}\rangle^2\\
|
|
|
+ &= \left \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right \rangle \left \langle \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right \rangle - \left \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right \rangle^2\\
|
|
|
&= (x_1^2 + x_2^2 + x_3^2) (y_1^2 + y_2^2 + y_3^2) - (x_1 y_1 + x_2 y_2 + x_3 y_3)^2
|
|
|
\end{align*}
|
|
|
\end{beweis}
|