|
@@ -15,6 +15,7 @@
|
|
|
\usepackage[framed,amsmath,thmmarks,hyperref]{ntheorem}
|
|
|
\usepackage{framed}
|
|
|
\usepackage{nicefrac}
|
|
|
+\usepackage{siunitx}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Define theorems %
|
|
@@ -334,7 +335,7 @@ Because:
|
|
|
Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
|
|
|
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \left (x_p+\frac{b}{2a},\;\; y_p+\frac{b^2}{4a}-c \right )\]
|
|
|
|
|
|
-As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
|
|
|
+\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
|
|
|
$P = (0, w)$ could possilby have three minima.
|
|
|
|
|
|
Then compute:
|
|
@@ -353,8 +354,43 @@ should get as close to $0$ as possilbe when we want to minimize
|
|
|
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
|
|
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
|
|
|
|
|
|
-So the solution is given by
|
|
|
+\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
|
|
|
+\begin{align}
|
|
|
+ d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\
|
|
|
+ &= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 - w^2)}\\
|
|
|
+ &= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 - w^2}\\
|
|
|
+ 0 &\stackrel{!}{=} d_{P, {f_2}}'(x) \\
|
|
|
+ &= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
|
|
|
+ &= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
|
|
|
+ \Leftrightarrow z &\stackrel{!}{=} (2a^2x^2 + (1- 2 aw)) x\\
|
|
|
+ \Leftrightarrow 0 &\stackrel{!}{=} 2 a^2 x^3 + (1- 2 aw)x - z\label{line:solution-equation}
|
|
|
+\end{align}
|
|
|
+
|
|
|
+The solution for this equation was computated with Wolfram|Alpha.
|
|
|
+I will only verify that the solution is correct. As there is only
|
|
|
+one solution in this case, we only have to check this one.
|
|
|
+
|
|
|
+\begin{align}
|
|
|
+ t &:= \sqrt[3]{108a^4z + \sqrt{\num{11664}a^8 z^2 + 864 a^6 (1-2aw)^3}}\\
|
|
|
+ x &= \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t}\\
|
|
|
+ \xRightarrow{x \text{ in line }\ref{line:solution-equation}} 0 &\stackrel{!}{=} 2a^2 \left ( \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3 + (1-2aw) (\frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t}) - z\\
|
|
|
+ &= 2a^2 \underbrace{\left ( \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3}_{=: \alpha} + \frac{t \cdot (1-2aw)}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2} (1-2aw)^2}{t} - z
|
|
|
+\end{align}
|
|
|
|
|
|
+Now compute $\alpha$. We know that $(a-b)^3 = a^3 - 3a^2 b +3ab^2 - b^3$:
|
|
|
+\begin{align}
|
|
|
+ \alpha &= \left (\frac{t}{6 \sqrt[3]{2} a^2} \right )^3 - 3 \left (\frac{t}{6 \sqrt[3]{2} a^2} \right )^2 \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right ) + 3 \left (\frac{t}{6 \sqrt[3]{2} a^2} \right ) \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right )^2 - \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3\\
|
|
|
+ &= \frac{t^3}{216 \cdot 2 \cdot a^6} - \frac{3t^2}{36 \sqrt[3]{4} a^4} \cdot \frac{\sqrt[3]{2}(1-2aw)}{t}
|
|
|
+ + \frac{3t}{6 \sqrt[3]{2} a^2} \cdot \frac{\sqrt[3]{4} (1-2aw)^2}{t^2} - \frac{2 (1-2aw)^3}{t^3}\\
|
|
|
+ &= \frac{t^3}{432a^6} - \frac{t (1-2aw)}{12\sqrt[3]{2} a^4} + \frac{\sqrt[3]{2} (1-2aw)^2}{2ta^2} - \frac{2 (1-2aw)^3}{t^3}\\
|
|
|
+ &= \frac{t^3}{432a^6} + \frac{t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2}{12\sqrt[3]{2} a^4} - \frac{2 (1-2aw)^3}{t^3}\\
|
|
|
+ &= \frac{t^3- 2 (1-2aw)^3 \cdot 432a^6}{432a^6 t^3} + \frac{t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2}{12\sqrt[3]{2} a^4}\\
|
|
|
+ &= \frac{\sqrt[3]{2}(t^3- 2 (1-2aw)^3 \cdot 432a^6) + 36 a^2 t^3 (t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2)}{432 \sqrt[3]{2} a^6 t^3}\\
|
|
|
+ &= \frac{\sqrt[3]{2} t^3 - \sqrt[3]{2} (1-2aw)^3 \cdot 864a^6 + 36 a^2 t^3 (2awt^1-t^2 + 6 \sqrt[3]{4} a^2 (1-2aw)^2)}{6 \sqrt[3]{2} a^2 t \cdot 2a^2 \cdot 36 a^2 t^2}
|
|
|
+\end{align}
|
|
|
+
|
|
|
+\goodbreak
|
|
|
+So the solution is given by
|
|
|
\begin{align*}
|
|
|
x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
|
|
|
\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
|
|
@@ -459,6 +495,68 @@ $\tilde{e}$.
|
|
|
This means, that there is no solution formula for the problem of
|
|
|
finding the closest points on a cubic function to a given point.
|
|
|
|
|
|
+\subsection{Another approach}
|
|
|
+Just like we moved the function $f$ and the point to get in a
|
|
|
+nicer situation, we can apply this approach for cubic functions.
|
|
|
+
|
|
|
+\begin{figure}[htp]
|
|
|
+ \centering
|
|
|
+\begin{tikzpicture}
|
|
|
+ \begin{axis}[
|
|
|
+ legend pos=south east,
|
|
|
+ axis x line=middle,
|
|
|
+ axis y line=middle,
|
|
|
+ grid = major,
|
|
|
+ width=0.8\linewidth,
|
|
|
+ height=8cm,
|
|
|
+ grid style={dashed, gray!30},
|
|
|
+ xmin=-3, % start the diagram at this x-coordinate
|
|
|
+ xmax= 3, % end the diagram at this x-coordinate
|
|
|
+ ymin=-3, % start the diagram at this y-coordinate
|
|
|
+ ymax= 3, % end the diagram at this y-coordinate
|
|
|
+ axis background/.style={fill=white},
|
|
|
+ xlabel=$x$,
|
|
|
+ ylabel=$y$,
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
+ tick align=outside,
|
|
|
+ minor tick num=-3,
|
|
|
+ enlargelimits=true,
|
|
|
+ tension=0.08]
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
|
|
|
+ \addlegendentry{$f_1(x)=x^3$}
|
|
|
+ \addlegendentry{$f_2(x)=x^3 + x$}
|
|
|
+ \addlegendentry{$f_1(x)=x^3 - x$}
|
|
|
+ \addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
|
|
|
+ \addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
|
|
|
+ \end{axis}
|
|
|
+\end{tikzpicture}
|
|
|
+ \caption{Cubic functions with $b = d = 0$}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
|
|
|
+
|
|
|
+\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
|
|
|
+
|
|
|
+because
|
|
|
+
|
|
|
+\begin{align}
|
|
|
+ f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\
|
|
|
+ &= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right )
|
|
|
+ +b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right )
|
|
|
+ +c x - \frac{bc}{3a} + d\\
|
|
|
+ &= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\
|
|
|
+ & \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\
|
|
|
+ & \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\
|
|
|
+ &= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
|
|
|
+\end{align}
|
|
|
+
|
|
|
+\todo[inline]{Which way to move might be clever?}
|
|
|
+
|
|
|
\subsection{Number of points with minimal distance}
|
|
|
As there is an algebraic equation of degree 5, there cannot be more
|
|
|
than 5 solutions.
|