|
@@ -0,0 +1,137 @@
|
|
|
+\documentclass[a4paper,9pt]{scrartcl}
|
|
|
+\usepackage{amssymb, amsmath} % needed for math
|
|
|
+\usepackage{} % needed for math
|
|
|
+\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
+\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
|
+\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
+\usepackage[margin=2.5cm]{geometry} %layout
|
|
|
+\usepackage{hyperref} % links im text
|
|
|
+\usepackage{color}
|
|
|
+\usepackage{framed}
|
|
|
+\usepackage{enumerate} % for advanced numbering of lists
|
|
|
+\clubpenalty = 10000 % Schusterjungen verhindern
|
|
|
+\widowpenalty = 10000 % Hurenkinder verhindern
|
|
|
+
|
|
|
+\hypersetup{
|
|
|
+ pdfauthor = {Martin Thoma},
|
|
|
+ pdfkeywords = {Lineare Algebra},
|
|
|
+ pdftitle = {Lineare Algebra - Definitionen}
|
|
|
+}
|
|
|
+
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+% Custom definition style, by %
|
|
|
+% http://mathoverflow.net/questions/46583/what-is-a-satisfactory-way-to-format-definitions-in-latex/58164#58164
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+\makeatletter
|
|
|
+\newdimen\errorsize \errorsize=0.2pt
|
|
|
+% Frame with a label at top
|
|
|
+\newcommand\LabFrame[2]{%
|
|
|
+ \fboxrule=\FrameRule
|
|
|
+ \fboxsep=-\errorsize
|
|
|
+ \textcolor{FrameColor}{%
|
|
|
+ \fbox{%
|
|
|
+ \vbox{\nobreak
|
|
|
+ \advance\FrameSep\errorsize
|
|
|
+ \begingroup
|
|
|
+ \advance\baselineskip\FrameSep
|
|
|
+ \hrule height \baselineskip
|
|
|
+ \nobreak
|
|
|
+ \vskip-\baselineskip
|
|
|
+ \endgroup
|
|
|
+ \vskip 0.5\FrameSep
|
|
|
+ \hbox{\hskip\FrameSep \strut
|
|
|
+ \textcolor{TitleColor}{\textbf{#1}}}%
|
|
|
+ \nobreak \nointerlineskip
|
|
|
+ \vskip 1.3\FrameSep
|
|
|
+ \hbox{\hskip\FrameSep
|
|
|
+ {\normalcolor#2}%
|
|
|
+ \hskip\FrameSep}%
|
|
|
+ \vskip\FrameSep
|
|
|
+ }}%
|
|
|
+}}
|
|
|
+\definecolor{FrameColor}{rgb}{0.25,0.25,1.0}
|
|
|
+\definecolor{TitleColor}{rgb}{1.0,1.0,1.0}
|
|
|
+
|
|
|
+\newenvironment{contlabelframe}[2][\Frame@Lab\ (cont.)]{%
|
|
|
+ % Optional continuation label defaults to the first label plus
|
|
|
+ \def\Frame@Lab{#2}%
|
|
|
+ \def\FrameCommand{\LabFrame{#2}}%
|
|
|
+ \def\FirstFrameCommand{\LabFrame{#2}}%
|
|
|
+ \def\MidFrameCommand{\LabFrame{#1}}%
|
|
|
+ \def\LastFrameCommand{\LabFrame{#1}}%
|
|
|
+ \MakeFramed{\advance\hsize-\width \FrameRestore}
|
|
|
+}{\endMakeFramed}
|
|
|
+\newcounter{definition}
|
|
|
+\newenvironment{definition}[1]{%
|
|
|
+ \par
|
|
|
+ \refstepcounter{definition}%
|
|
|
+ \begin{contlabelframe}{Definition \thedefinition:\quad #1}
|
|
|
+ \noindent\ignorespaces}
|
|
|
+{\end{contlabelframe}}
|
|
|
+\makeatother
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+% Begin document %
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+\begin{document}
|
|
|
+
|
|
|
+\begin{definition}{injektiv, surjektiv und bijektiv}
|
|
|
+Sei $f: A \rightarrow B$ eine Abbildung.
|
|
|
+ \begin{enumerate}[(a)]
|
|
|
+ \item $f$ heißt \textbf{surjektiv} $:\Leftrightarrow f(A) = B$
|
|
|
+ \item $f$ heißt \textbf{injektiv} $:\Leftrightarrow \forall x_1, x_2 \in A: x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
|
|
|
+ \item $f$ heißt \textbf{bijektiv} $:\Leftrightarrow f$ ist surjektiv und injektiv
|
|
|
+ \end{enumerate}
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{Relation}
|
|
|
+Seien A und B Mengen. $R \subseteq A \times B$ heißt \textbf{Relation}.
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{Ordnungsrelation}
|
|
|
+Eine Relation $\leq$ heißt Ordnungsrelation in A und $(A, \leq)$ heißt
|
|
|
+(partiell) geordnete Menge, wenn für alle $a, b, c \in A$ gilt:
|
|
|
+
|
|
|
+ \begin{description}
|
|
|
+ \item[O1] $a \leq a$ (reflexiv)
|
|
|
+ \item[O2] $a \leq b \land b \leq a \Rightarrow a = b$ (antisymmetrisch)
|
|
|
+ \item[O3] $a \leq b \land b \leq c \Rightarrow a \leq c$ (transitiv)
|
|
|
+ \end{description}
|
|
|
+
|
|
|
+\noindent $(A, \leq)$ heißt total geordnet $:\Leftrightarrow \forall a, b, \in A: a \leq b \lor b \leq a$
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{Äquivalenzrelation}
|
|
|
+Sei $R \subseteq A \times A$ eine Relation.
|
|
|
+R heißt Äquivalenzrelation, wenn für alle $a, b, c \in A$ gilt:
|
|
|
+
|
|
|
+ \begin{description}
|
|
|
+ \item[Ä1] $a R a$ (reflexiv)
|
|
|
+ \item[Ä2] $a R b \Rightarrow b R a$ (symmetrisch)
|
|
|
+ \item[Ä3] $a R b \land b R c \Rightarrow a R c$ (transitiv)
|
|
|
+ \end{description}
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{Assoziativität}
|
|
|
+Sei A eine Menge und $*$ eine Verknüpfung auf A.\\
|
|
|
+A heißt \textbf{assoziativ} $:\Leftrightarrow \forall a, b, c \in A: (a * b) * c = a * (b*c)$
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{Gruppe}
|
|
|
+Sei G eine Menge und $*$ eine Verknüpfung auf G.\\
|
|
|
+$(G, *)$ heißt \textbf{Gruppe} $: \Leftrightarrow$
|
|
|
+ \begin{description}
|
|
|
+ \item[G1] $\forall a, b, c \in G: (a * b)*c=a*(b*c)$ (assoziativ)
|
|
|
+ \item[G2] $\exists e \in G \forall a \in G: e * a = a = a * e$ (neutrales Element)
|
|
|
+ \item[G3] $\forall a \in G \exists a^{-1} \in G: a^{-1}*a=e=a*a^{-1}$ (inverses Element)
|
|
|
+ \end{description}
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\begin{definition}{abelsche Gruppe}
|
|
|
+Sei $(G, *)$ eine Gruppe.
|
|
|
+$(G, *)$ heißt \textbf{abelsche Gruppe} $: \Leftrightarrow$
|
|
|
+ \begin{description}
|
|
|
+ \item[G4] $\forall a, b \in G: a * b = b * a$ (kommutativ)
|
|
|
+ \end{description}
|
|
|
+\end{definition}
|
|
|
+
|
|
|
+\end{document}
|