|
@@ -668,6 +668,18 @@ Wenn $\pi_1(X,x) = \Set{e}$ für ein $x \in X$ gilt, dann wegen
|
|
|
\textbf{Liftung} von $f$, wenn $p \circ \tilde{f} = f$ ist.
|
|
|
\end{definition}
|
|
|
|
|
|
+\begin{figure}[h]
|
|
|
+ \centering
|
|
|
+ \begin{tikzpicture}
|
|
|
+ \node (Y) {$Y$};
|
|
|
+ \node (X) [below=0.7cm of Y] {$X$};
|
|
|
+ \node (Z) [right=1.3cm of Y] {$Z$};
|
|
|
+ \path[anchor=east,->] (Y) edge node {$p$} (X);
|
|
|
+ \path[anchor=south,->] (Z) edge node {$\tilde{f}$} (Y);
|
|
|
+ \path[anchor=north west,->] (Z) edge node {$f$} (X);
|
|
|
+ \end{tikzpicture}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
\begin{figure}[htp]
|
|
|
\centering
|
|
|
\resizebox{0.95\linewidth}{!}{\input{figures/liftung-torus-r.tex}}
|
|
@@ -682,12 +694,12 @@ Wenn $\pi_1(X,x) = \Set{e}$ für ein $x \in X$ gilt, dann wegen
|
|
|
$\exists z_0 \in Z: f_0(z_0) = f_1(z_0) \Rightarrow f_0 = f_1$
|
|
|
\end{bemerkung}
|
|
|
|
|
|
-\begin{figure}[htp]
|
|
|
- \centering
|
|
|
- \input{figures/commutative-diagram-2.tex}
|
|
|
- \caption{Situation aus \cref{kor:12.5}}
|
|
|
- \label{fig:situation-kor-12.5}
|
|
|
-\end{figure}
|
|
|
+% \begin{figure}[htp]
|
|
|
+% \centering
|
|
|
+% \input{figures/commutative-diagram-2.tex}
|
|
|
+% \caption{Situation aus \cref{kor:12.5}}
|
|
|
+% \label{fig:situation-kor-12.5}
|
|
|
+% \end{figure}
|
|
|
|
|
|
\begin{beweis}
|
|
|
Sei $T = \Set{z \in Z | f_0(z) = f_1(z)}$.
|