|
@@ -40,7 +40,13 @@
|
|
|
\EndIf
|
|
|
\ElsIf{!$\Call{isPrime}{|a|}$} \Comment{Regel (II)}
|
|
|
\State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
|
|
|
- \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, a}$
|
|
|
+ \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, a}$ \Comment{nun: $a \in \mathbb{P}$}
|
|
|
+ \ElsIf{$a == 2$} \Comment{Regel (VII)}
|
|
|
+ \If{$a \equiv \pm 1 \mod 8$}
|
|
|
+ \State \Return 1
|
|
|
+ \Else
|
|
|
+ \State \Return -1
|
|
|
+ \EndIf \Comment{nun: $a \in \mathbb{P}, a \geq 3$}
|
|
|
\ElsIf{$p == 3$} \Comment{Regel (IV)}
|
|
|
\State $t \gets p \mod 3$
|
|
|
\If{$t == 2$}
|
|
@@ -48,7 +54,7 @@
|
|
|
\EndIf
|
|
|
\State \Return $t$
|
|
|
\Else
|
|
|
- \State \Return $a^\frac{p-1}{2} \mod p$
|
|
|
+ \State \Return $(-1) \cdot \Call{CalculateLegendre}{p, a}$
|
|
|
\EndIf
|
|
|
\end{algorithmic}
|
|
|
\caption{Calculate Legendre-Symbol}
|