|
|
@@ -4,54 +4,33 @@
|
|
|
\[I(f) = \int_a^b f(x) \mathrm{d}x \]
|
|
|
|
|
|
\begin{enumerate}
|
|
|
- \item Integrand am linken und am rechten Rand interpolieren
|
|
|
+ \item Integrand am linken und am rechten Rand interpolieren
|
|
|
\item Interpolationspolynom mit Quadraturformel integrieren
|
|
|
\end{enumerate}
|
|
|
|
|
|
\textbf{Lösung}:
|
|
|
|
|
|
-Stützstellen:
|
|
|
+Nutze Interpolationsformel von Lagrange:
|
|
|
|
|
|
-\[(a, f(a)) \text{ und } (b, f(b))\]
|
|
|
+\[p(x) = \sum_{i=0}^{1} f_i \cdot L_i(x)\]
|
|
|
|
|
|
-$\Rightarrow$ Polynom 1. Grades interpoliert diese \\
|
|
|
-$\Rightarrow$ Gerade $y = m \cdot x +t$ interpoliert
|
|
|
+Berechne Lagrangepolynome:
|
|
|
|
|
|
\begin{align}
|
|
|
- f(a) &= a \cdot m + t\\
|
|
|
- f(b) &= b \cdot m + t\\
|
|
|
-\Leftrightarrow
|
|
|
- t &= f(a) - ma\\
|
|
|
- t &= f(b) - mb\\
|
|
|
-\Rightarrow
|
|
|
- f(a) - ma &= f(b) - mb\\
|
|
|
-\Leftrightarrow f(a) - f(b) &= ma - mb\\
|
|
|
-\stackrel{a \neq b}{\Leftrightarrow} m &= \frac{f(a) - f(b)}{a - b}\\
|
|
|
-\Rightarrow t &= f(a) - \frac{f(a) - f(b)}{a - b} \cdot a\\
|
|
|
-\Leftrightarrow t &= \frac{f(a) \cdot a - f(a) \cdot b - f(a) \cdot a - f(b) \cdot a}{a-b}\\
|
|
|
-\Leftrightarrow t &= \frac{- f(a) \cdot b - f(b) \cdot a}{a-b}\\
|
|
|
-\Leftrightarrow t &= \frac{f(a) \cdot b + f(b) \cdot a}{b-a}
|
|
|
+ L_0(x) = \frac{x-b}{a-b} \\
|
|
|
+ L_1(x) = \frac{x-a}{b-a}
|
|
|
\end{align}
|
|
|
|
|
|
-Das Interpolationspolynom $p(x)$ lautet also
|
|
|
+So erhalten wir:
|
|
|
|
|
|
-\[ p(x) = \frac{f(a) - f(b)}{a - b} \cdot x + \frac{f(a) \cdot b + f(b) \cdot a}{b-a}\]
|
|
|
+\[p(x) = f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a}\]
|
|
|
|
|
|
-Für Polynome ersten Grades benötigt man eine Quadraturformel vom Grad 2 (also NICHT die Rechteckregel).
|
|
|
+Nun integrieren wir das Interpolationspolynom:
|
|
|
|
|
|
-\paragraph{Lösung 1: Mittelpunktsregel}
|
|
|
-Die Mittelpunktsregel lautet
|
|
|
-\[\int_a^b f(x) dx \approx (b-a) f(a + \frac{1}{2}(b-a))\]
|
|
|
-
|
|
|
-Damit ergibt sich
|
|
|
-
|
|
|
-\[I(f) \approx (b-a) \underbrace{(\frac{f(a) - f(b)}{a - b} \cdot (a + \frac{1}{2}(b-a)) + \frac{f(a) \cdot b + f(b) \cdot a}{b-a})}_{p(a + \frac{1}{2}(b-a))}\]
|
|
|
-
|
|
|
-\paragraph{Lösung 2: Trapezregel}
|
|
|
-Die Trapezregel lautet
|
|
|
-\[\int_a^b f(x) dx \approx (b-a) \left (\frac{1}{2}f(a) + \frac{1}{2} f(b) \right )\]
|
|
|
-
|
|
|
-TODO: Mache das, wer will.
|
|
|
+\[ \int_a^b p(x)dx = \int_a^b f(a) \frac{x-b}{a-b}dx + \int_a^b f(b) \frac{x-a}{b-a}dx \]
|
|
|
+\[ = \int_a^b \frac{f(a) \cdot x}{a-b}dx - \int_a^b \frac{f(a) \cdot b}{a-b}dx + \int_a^b \frac{f(b) \cdot x}{b-a}dx - \int_a^b \frac{f(b) \cdot a}{b-a}dx \]
|
|
|
+\[ = \frac{1}{2} \cdot \frac{f(a) \cdot b^2}{a-b} - \frac{1}{2} \cdot \frac{f(a) \cdot a^2}{a-b} - \frac{f(a) \cdot b^2}{a-b} + \frac{f(a) \cdot b \cdot a}{a-b} + \frac{1}{2} \cdot \frac{f(b) \cdot b^2}{b-a} \]
|
|
|
+\[ - \frac{1}{2} \cdot \frac{f(b) \cdot a^2}{b-a} - \frac{f(b) \cdot a \cdot b}{b-a} + \frac{f(b) \cdot a^2}{b-a}\]
|
|
|
|
|
|
\subsection*{Teilaufgabe b)}
|
|
|
Sei nun $f(x) = x^2$ und $a = 0$ sowie $b = 4$. Man soll die ermittelte
|
|
|
@@ -60,10 +39,5 @@ Formel zwei mal auf äquidistanten Intervallen anwenden.
|
|
|
\textbf{Lösung:}
|
|
|
|
|
|
\begin{align}
|
|
|
- \int_a^b f(x)\mathrm{d}x &=\int_a^{\frac{b-a}{2}} f(x) \mathrm{d}x + \int_{\frac{b-a}{2}}^b f(x) \mathrm{d}x\\
|
|
|
- \int_0^4 x^2 \mathrm{d}x &=\int_0^2 x^2 \mathrm{d}x + \int_2^4 x^2 \mathrm{d}x\\
|
|
|
- \int_0^2 x^2 \mathrm{d}x &\approx (2-0) (\frac{f(0) - f(2)}{0 - 2} \cdot (0 + \frac{1}{2}(2-0)) + \frac{f(0) \cdot 2 + f(2) \cdot 0}{2-0})\\
|
|
|
- &= 2 \cdot \frac{-4}{-2} = 2\\
|
|
|
- \int_2^4 x^2 \mathrm{d}x &\approx (4-2) (\frac{f(2) - f(4)}{2 - 4} \cdot (2 + \frac{1}{2}(4-2)) + \frac{f(2) \cdot 4 + f(4) \cdot 2}{4-2})\\
|
|
|
- &= \text{TODO}
|
|
|
+ \int_0^4 p(x) dx = \int_0^2 p(x)dx + \int_2^4 p(x)dx = 24
|
|
|
\end{align}
|