|
@@ -1,97 +1,48 @@
|
|
|
-\documentclass[a4paper]{article}
|
|
|
|
|
-
|
|
|
|
|
-\usepackage[english]{babel}
|
|
|
|
|
-\usepackage[utf8x]{inputenc}
|
|
|
|
|
-\usepackage{amsmath}
|
|
|
|
|
-\usepackage{graphicx}
|
|
|
|
|
-\usepackage[colorinlistoftodos]{todonotes}
|
|
|
|
|
-\usepackage{stmaryrd}
|
|
|
|
|
-\usepackage{parskip} % damit keine "unsinnigen" Einrückungen passieren
|
|
|
|
|
-
|
|
|
|
|
-\title{Musterlösungen für Numerik}
|
|
|
|
|
-\author{Felix Benz-Baldas}
|
|
|
|
|
|
|
+\documentclass[a4paper]{scrartcl}
|
|
|
|
|
+\usepackage{amssymb, amsmath} % needed for math
|
|
|
|
|
+\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
|
|
+\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
|
|
|
+\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
|
+\usepackage{pdfpages} % Signatureinbingung und includepdf
|
|
|
|
|
+\usepackage{geometry} % [margin=2.5cm]layout
|
|
|
|
|
+\usepackage[pdftex]{hyperref} % links im text
|
|
|
|
|
+\usepackage{color}
|
|
|
|
|
+\usepackage{framed}
|
|
|
|
|
+\usepackage{enumerate} % for advanced numbering of lists
|
|
|
|
|
+\usepackage{marvosym} % checkedbox
|
|
|
|
|
+\usepackage{wasysym}
|
|
|
|
|
+\usepackage{braket} % for \Set{}
|
|
|
|
|
+\usepackage{pifont}% http://ctan.org/pkg/pifont
|
|
|
|
|
+\usepackage{gauss}
|
|
|
|
|
+\usepackage{algorithm,algpseudocode}
|
|
|
|
|
+\usepackage{parskip}
|
|
|
|
|
+\usepackage{lastpage}
|
|
|
|
|
+\allowdisplaybreaks
|
|
|
|
|
+
|
|
|
|
|
+\newcommand{\cmark}{\ding{51}}%
|
|
|
|
|
+\newcommand{\xmark}{\ding{55}}%
|
|
|
|
|
+
|
|
|
|
|
+\title{Numerik Klausur 2 - Musterlösung}
|
|
|
|
|
+\makeatletter
|
|
|
|
|
+\AtBeginDocument{
|
|
|
|
|
+ \hypersetup{
|
|
|
|
|
+ pdfauthor = {Felix Benz-Baldas, Martin Thoma, Peter},
|
|
|
|
|
+ pdfkeywords = {Numerik, KIT, Klausur},
|
|
|
|
|
+ pdftitle = {\@title}
|
|
|
|
|
+ }
|
|
|
|
|
+ \pagestyle{fancy}
|
|
|
|
|
+ \lhead{\@title}
|
|
|
|
|
+ \rhead{Seite \thepage von \pageref{LastPage}}
|
|
|
|
|
+}
|
|
|
|
|
+\makeatother
|
|
|
|
|
+
|
|
|
|
|
+\usepackage{fancyhdr}
|
|
|
|
|
+\fancyfoot[C]{}
|
|
|
|
|
|
|
|
\begin{document}
|
|
\begin{document}
|
|
|
-\maketitle
|
|
|
|
|
-
|
|
|
|
|
-\section{Klausur 2}
|
|
|
|
|
-\subsection{Aufgabe 1}
|
|
|
|
|
-\subsubsection*{(a)}
|
|
|
|
|
-
|
|
|
|
|
-$
|
|
|
|
|
-L =
|
|
|
|
|
-\begin{pmatrix}
|
|
|
|
|
-2 & 0 & 0 \\
|
|
|
|
|
-1 & 2 & 0 \\
|
|
|
|
|
-4 & 2 & 3 \\
|
|
|
|
|
-\end{pmatrix}
|
|
|
|
|
-$
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-\subsubsection*{(b)}
|
|
|
|
|
-gesucht: det(A)
|
|
|
|
|
-
|
|
|
|
|
-sei P * L = L * R, die gewohnte LR-Zerlegung
|
|
|
|
|
-
|
|
|
|
|
-dann gilt:
|
|
|
|
|
-
|
|
|
|
|
-$det(A) = det(L) * det(R) / det(P)$
|
|
|
|
|
-
|
|
|
|
|
-det(L) = 1, da alle Diagonalelemente 1 sind und es sich um eine untere Dreiecksmatrix handelt.
|
|
|
|
|
-
|
|
|
|
|
-$ det(R) = r_{11} * ... * r_{nn} $ da es sich um eine obere Dreiecksmatrix handelt.
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-$ det(P) = $ 1 oder -1
|
|
|
|
|
-
|
|
|
|
|
-Das Verfahren ist also:
|
|
|
|
|
-\begin{enumerate}
|
|
|
|
|
-\item Berechne Restmatrix R mit dem Gaußverfahren.
|
|
|
|
|
-\item \label{manker} Multipliziere die Diagonalelemente von R
|
|
|
|
|
-\item falls die Anzahl an Zeilenvertauschungen ungerade ist negiere das Produkt aus \ref{manker} (eine Zeilenvertauschung verändert lediglich das Vorzeichen und P ist durch Zeilenvertauschungen aus der Einheitsmatrix hervorgegangen)
|
|
|
|
|
-\end{enumerate}
|
|
|
|
|
-
|
|
|
|
|
-\subsection{Aufgabe 2}
|
|
|
|
|
-\subsubsection*{(a)}
|
|
|
|
|
-Formel: $y_i = (b_i - \sum_{j=1}^{i-1} y_j \cdot l_{ij} ) \div l_{ii} $
|
|
|
|
|
-
|
|
|
|
|
-Anmerkung: $l_{ii}$ kann nicht $0$ sein, da L dann nicht mehr invertierbar wäre.
|
|
|
|
|
-
|
|
|
|
|
-Algorithmus:
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item for i = 1 to i = n do
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item sum = 0
|
|
|
|
|
-\item for j = 1 to j = i - 1 do
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item sum = sum + $y_i \cdot l_{ij}$
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-\item od
|
|
|
|
|
-\item $y_i = (b_i - sum) \div l_{ii}$
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-\item od
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-
|
|
|
|
|
-\subsubsection*{(b)}
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item function $ x = LoeseLGS(A,b)$
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item $(P,L,R) = LRZer(A)$
|
|
|
|
|
-\item $b'=P \cdot b $
|
|
|
|
|
-\item $c = VorSub(L,b') $
|
|
|
|
|
-\item $x=RueckSub(R,c)$
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-\item end
|
|
|
|
|
-
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-
|
|
|
|
|
-
|
|
|
|
|
-\subsubsection*{(c)}
|
|
|
|
|
-Aufwand:
|
|
|
|
|
-\begin{itemize}
|
|
|
|
|
-\item Vorwärts-/Rückwärtssubstitution: jeweils $\frac{1}{2} \cdot n^2$
|
|
|
|
|
-\item LR-Zerlegung: $\frac{1}{3}n^3$ (den Beweis dazu braucht man nicht wissen)
|
|
|
|
|
-\item gesamt: $\frac{1}{3}n^3+n^2$
|
|
|
|
|
-\end{itemize}
|
|
|
|
|
-
|
|
|
|
|
|
|
+ \include{Aufgabe1}
|
|
|
|
|
+ \include{Aufgabe2}
|
|
|
|
|
+ \include{Aufgabe3}
|
|
|
|
|
+ \include{Aufgabe4}
|
|
|
|
|
+ \include{Aufgabe5}
|
|
|
\end{document}
|
|
\end{document}
|