|
@@ -356,7 +356,7 @@ For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \
|
|
|
So the solution is given by
|
|
|
|
|
|
\begin{align*}
|
|
|
-x_S &:= - \frac{b}{2a}\\
|
|
|
+x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
|
|
|
\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
|
|
|
x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and } &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\
|
|
|
x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\
|