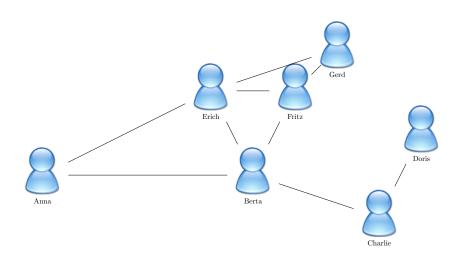
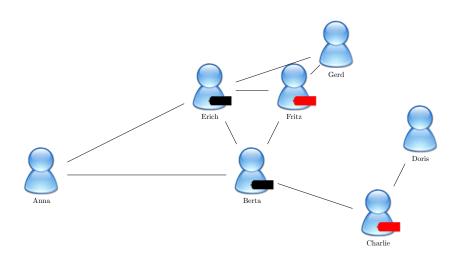


On Node Classification in Dynamic Content-based Networks


Martin Thoma | 28. Februar 2014

INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

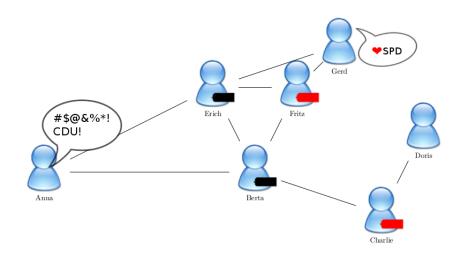
Social Network



 Szenario
 Überblick
 Vokabular
 Sprungtypen
 Ende

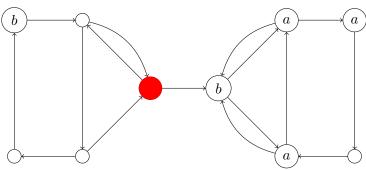
 ●00
 000
 00
 000
 000

Partially labeled network



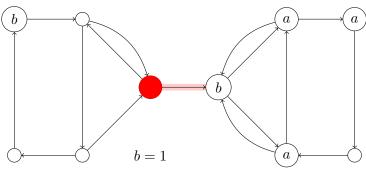
Szenario	Überblick	Vokabular	Sprungtypen	Ende
000	000	00	00	0000

Partially labeled network with content



 Szenario
 Überblick
 Vokabular
 Sprungtypen
 Ende

 00●
 000
 00
 00
 000


Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

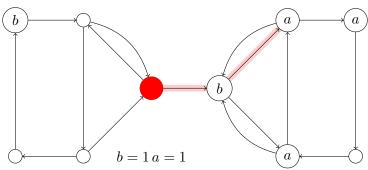
Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma - On Node	Classification in	Dynamic Content based Nature

Vakabular

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

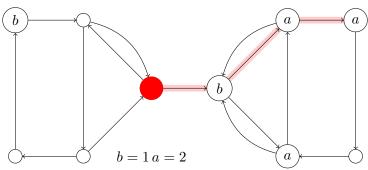
Sanaria


3 Sprünge pro Random Walk

Überblick

• $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

OLCHUIO	O D C I D II C II	v Ortabarar
000	●00	00
Martin Thoma - On Node C	Tassification in Dynamic Conte	nt based Network


Klassifizieren des roten Knotens:

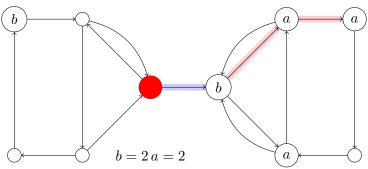
- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks

Klassifizieren des roten Knotens:

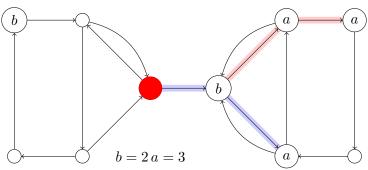
- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks


- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks

28. Februar 2014

Ende


Klassifizieren des roten Knotens:

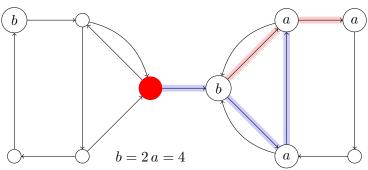
- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks

Klassifizieren des roten Knotens:

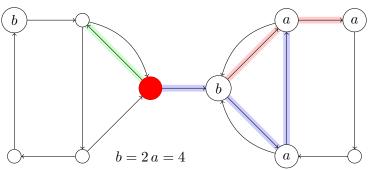
- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks


- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	- On Node Classification in Dyna	mic Content-based Networks

28. Februar 2014

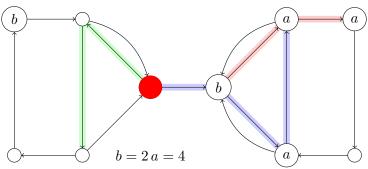
Ende


Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks


Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks


Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma -	On Node Classification in Dyna	amic Content-based Networks

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks

- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenario	Überblick	Vokabular
000	●00	00
Martin Thoma - On Node (Classification in Dynamic Contr	ent-based Network

28. Februar 2014

Ende

Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks
- 3 Sprünge pro Random Walk
- $4 \cdot a$, $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

Szenano	
000	

5/15

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

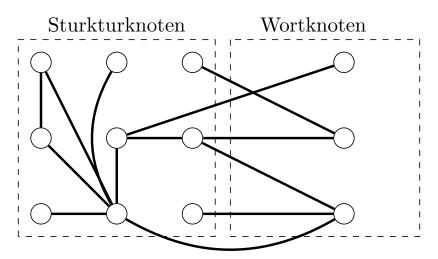
- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - lexte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

6/15

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa


- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Wünschenswert: Wenig weiterer Programmieraufwand
- Idee: Graph erweitern
 - Texte als Wortmengen
 - Strukturknoten verweisen auf Wortknoten
 - vice versa

Erweiterter, semi-bipartiter Graph

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

ldee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

ldee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

ldee

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzer

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzer

- Viele Texte ⇒ Komplette Textanalyse nicht möglich
- Füllwörter: und, oder, im, in, ...
- ⇒ Beschränkung des Vokabulars sinnvoll

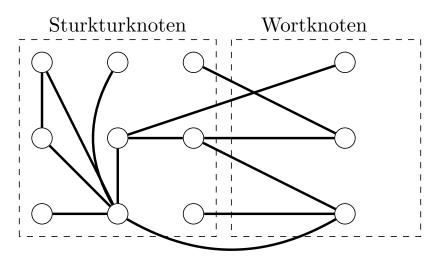
Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- lack q nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- lack q nahe bei $1 \Rightarrow \text{Wort}$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- \blacksquare g nahe bei 1 \Rightarrow Wort ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient


- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$ mit p_i als relative Häufigkeit
- $g \in (0,1]$
- g nahe bei $1 \Rightarrow Wort$ ist stark ungleich verteilt
- \Rightarrow Nehme Top-m Wörter mit höchstem Gini-Koeffizient

Sprungtypen

Überblick

Vokabular

Sprungtypen

Ende 28. Februar 2014

Inhaltlicher Mehrfachsprung

- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Mehrfachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'

Inhaltlicher Mehrfachsprung

- $lacktriang{lacktriang}{lacktriang}$ von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Mehrfachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'

Danke!

Gibt es Fragen?

Bildquellen

Crystal_Clear_app_personal.png von Wikipedia Commons

Literatur

 Charu C. Aggarwal, Nan Li: On Node Classification in Dynamic Content-based Networks

Folien, LaTeXund Material

Der Foliensatz und die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeXexamples/tree/master/presentations/Datamining-Proseminar Kurz-URL: tinyurl.com/Info-Proseminar

Szenario

Überblick

Vokabular

Sprungtypen

28. Februar 2014

Ende