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Introduction

When you want to develop a selfdriving car, you have to plan which path it should take. A
reasonable choice for the representation of paths are cubic splines. You also have to be able to
calculate how to steer to get or to remain on a path. A way to do this is by applying the PID
algorithm. This algorithm needs to know the signed current error. So you need to be able to get
the minimal distance of a point (the position of the car) to a cubic spline (the prefered path)
combined with the direction (left or right). As you need to get the signed error (and one steering
direction might be prefered), it is not only necessary to get the minimal absolute distance, but
might also help to get all points on the spline with minimal distance.

In this paper, I want to discuss how to find all points on a cubic function with minimal distance to
a given point. As other representations of paths might be easier to understand and to implement,
I will also cover the problem of finding the minimal distance of a point to a polynomial of degree
0, 1 and 2.

While I analyzed this problem, I've got interested in variations of the underlying PID-related
problem. So I will try to give robust and easy-to-implement algorithms to calculate the distance
of a point to a (piecewise or global) defined polynomial function of degree < 3.

When you’re able to calculate the distance to a polynomial which is defined on a closed invervall,
you can calculate the distance from a point to a spline by calculating the distance to the pieces of
the spline.
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1 Description of the Problem

Let f: D — R with D C R be a polynomial function and P € R? be a point. Let dpys:R — Rar
be the Euklidean distance of P to a point (z, f(x)) on the graph of f:

dp,s(x) = \/(z —2p)? + (f(x) — yp)?

Now there is finite set M = { x1,...,2, } € D of minima for given f and P:
M = {x € D |dps(xr) =mindp¢(T) }
’ zeD

But minimizing dp, s is the same as minimizing dQP,f = :L'IQJ — 2x,7 + 2% + yg —2ypf(x) + f(2)%

In order to solve the minimal distance problem, Fermat’s theorem about stationary points will be
tremendously usefull:

Theorem 1 (Fermat’s theorem about stationary points)
Let xg be a local extremum of a differentiable function f : R — R.

Then: f'(z¢) = 0.

So in fact you can calculate the roots of (dp, (z))’ to get candidates for minimal distance. These
candidates include all points with minimal distance, but might also contain more. Example
shows such a situation.

Let S, be the function that returns the set of solutions for a polynomial f of degree n and a
point P:
S,, : { Polynomials of degree n defined on R } x R* — P(R)

Sn(f,P) == argmindp s(x) = M
Tz€R

If possible, I will explicitly give this function.



2 Constant functions

2.1 Defined on R

Let f: R — R, f(z) := ¢ with ¢ € R be a constant function. The situation can be seen in

Figure 2.1}
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Figure 2.1: Three constant functions and their points with minimal distance

The point (z, f(z)) with minimal distance can be calculated directly:

dpf(z) = \/(zp — 2)2 + (yp — f(2))? (2.1)

= \/(a:%) —2zpx + a2) + (y}p — 2ypc+ ¢2) (2.2)

= \/gﬂ —2zpx + (2% + y% — 2ypc + ¢?) (2.3)

SR 0 = (d ()Y (2.0
=2z — 2zp (2.5)

Sa=ap (2.6)

Then (zp, f(zp)) has minimal distance to P. Every other point has higher distance. See Figure[2.1
to see that intuition yields to the same results.

This result means:

So(f,P) ={xp} with P = (zp,yp)



2 Constant functions

2.2 Defined on a closed interval [a,b] C R

Theorem 2 (Solution formula for constant functions)
Let f:[a,b] = R, f(x) := ¢ with a,b,c € R and a < b be a constant function.

Then the point (z, f(z)) of f with minimal distance to P is given by:

S(](f,P) lfSO(fup)m[a7b]7é®
argmindp ¢(z) = ¢ {a} if So(f,P)>axp<a

v€lab) (b} if So(f,P)>xp >b
1 Yy Ph,mm
—f(#)=1,D=[-5-2]B - e
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Figure 2.2: Three constant functions and their points with minimal distance

Proof:
arg min dp, ;(z) = arg mindp f(z)* (2.7)
z€|a,b] z€[a,b]
constant

= arg min(:v2 —2xpx + 2% + (y» — 2ypc + ¢?) ) (2.8)

z€[a,b]
= argmin(2?® — 2zpx + %) (2.9)

z€[a,b]
= argmin(z — zp)? (2.10)

z€[a,b]

which is optimal for © = zp, but if zp ¢ [a,b], you want to make this term as small as
possible. It gets as small as possible when z is as similar to x, as possible. This yields
directly to the solution formula. |



3 Linear function

3.1 Defined on R

Theorem 3 (Solution formula for linear functions on R)
Let f : R — R be a linear function f(z):=m- -z +t withm e R\ {0} and t € R be a
linear function.

Then the points (z, f(z)) with minimal distance are given by:
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Figure 3.1: The shortest distance of P to f can be calculated by using the perpendicular

Proof: With Theorem [1] you get:

0= (dps(2)?)’ (3.1)
=2(z — zp) + 2(f(x) —yp)f'(z) (3.2)

& 0=z —ap+(f(x) —yp)f(2) (3.3)
=z —xp+ (mx+t—yp)-m (3.4)
=z(m+1)+m(t—yp) —zp (3.5)
PR e (3.6
S (RS Y (37)

It is obvious that a minium has to exist, the x from Equation has to be this minimum.



3 Linear function
3.2 Defined on a closed interval [a,b] C R

Let f:[a,b] = R, f(x) :==m -z +t with a,b,m,t € R and a < b, m # 0 be a linear function.
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Figure 3.2: Different situations when you have linear functions which are defined on a closed
intervall

The point with minimum distance can be found by:

Si(f, P) it Si(f, P)Na,b] # 0
argmindpf(z) =< {a} if Si(f,P)sz<a
z€la,b] {b} if S1(f,P)>xz>0



4 Quadratic functions

4.1 Defined on R

Let f(z) =a-2?>+b-2+cwitha € R\ {0} and b,c € R be a quadratic function.

Figure 4.1: Quadratic functions

4.1.1 Calculate points with minimal distance

In this case, d%; 7 is polynomial of degree 4. We use Theorem

0= (db;) (4.1)

= 20 — 2z, — 2, f'(2) + (f(2)?)' (4.2)
=2z — 2z, — 2y, f'(z) + 2f(z) - f'() (chain rule) (4.3)
S022—12p—y,f(2) + f(2)- f'(z) (divide by 2) (4.4)
=z — 1) — yp(2az + b) + (az® + bz + ¢)(2az + b) (4.5)

=1 —xp — Y- 20z — ypb + (2a%2® + 2aba® + 2acx + abxr® + b2z + be) (4.6)

=1 —xp — 2ypax — ypb + (2a%2> + 3abaz® + 2acx + b*x + be) (4.7)

= 2a*2® + 3abx® + (1 — 2ypa + 2ac + b*)z + (be — by, — =) (4.8)

This is an algebraic equation of degree 3. There can be up to 3 solutions in such an equation.
Those solutions can be found with a closed formula. But not every solution of the equation given
by Theorem [I| has to be a solution to the given problem.



4 Quadratic functions

Example 1
Let a=1,b=0,c= 1,2, =0,y, = 1. So f(z) = 2% — 1 and P(0,1).

%Equaﬁon I 0 L9y3 3x (4.9)

= z(222 — 3) (4.10)
= T12 = :E\/g and z3 =20 (4.11)
dp(xs) = 02+ (—1—-1)2=2 (4.12)

2 2
dp s (j: g) - ( 2-0) + @ - 1) (4.13)
=/3/24+1/4 (4.14)
=/7/4 (4.15)
(4.16)

This means z3 is not a point of minimal distance, although (dp ¢(x3)) = 0.

4.1.2 Number of points with minimal distance

Theorem 4
A point P has either one or two points on the graph of a quadratic function f that are
closest to P.

Proof: The number of closests points of f cannot be bigger than 3, because Equation is a
polynomial function of degree 3. Such a function can have at most 3 roots.

In the following, I will do some transformations with f = fy and P = F.

Moving fy and Py simultaneously in x or gy direction does not change the minimum distance.
Furthermore, we can find the points with minimum distance on the moved situation and
calculate the minimum points in the original situation.

First of all, we move fo and Py by % in z direction, so

filz) = ax® — zz +¢ and P = (xp + %, yp>
Because{]]
f(z —b/2a) = a(x — b/24)* + b(x — b/24) + ¢ (4.17)
= a(x? — bz + V*/102) + bx — V*/20 + ¢ (4.18)
= az? — bx 4 V*/aa + bz — V)20 + ¢ (4.19)
= az? — V)10 +c (4.20)

Then move f; and P; by % — ¢ in y direction. You get:

4@—0

=:z =w

b b2
f2($)=a$2 and P2=<$P+%, yp + — )
| ——

!The idea why you subtract % within f is that when you subtract something from x before applying f it takes
more time (x needs to be bigger) to get to the same situation. In consequence, if we want to move the whole
graph by 1 to the left, we have to add +1.



4 Quadratic functions

As fo(x) = az? is symmetric to the y axis, only points P = (0,w) could possilby have three
minima.

Then compute:

dp g, (x) = V/(z = 0)2 + (folz) — w)? (4.21)
= 22+ (az? — w)? (4.22)
= V22 + a2zt — 2awa? + w? (4.23)
= Vaz! + (1= 2aw)a® + w? (4.24)

The term
a?z? + (Y20 — w)

should get as close to 0 as possilbe when we want to minimize dp f,. For w < 1/24 you only
have x = 0 as a minimum. For all other points P = (0,w), there are exactly two minima

1
5 —W
T12 = + L‘a |

4.1.3 Solution formula

We start with the graph that was moved so that fo = ax?.

Case 1: P is on the symmetry axis, hence xp = —%.

In this case, we have already found the solution. If w = yp + % —c> i, then there are two
solutions:

T19==*

Otherwise, there is only one solution z; = 0.

Case 2: P = (z,w) is not on the symmetry axis, so z # 0. Then you compute:

dp,p,(2) = /(& — 2)? + (f(2) — w)? (4.27)
= /(22 — 222 + 22) + ((a2?)? — 2awx? + w?) (4.28)

= a2zt + (1 — 2aw)a? + (—22)z + 22 + w? (4.29)

0= ((dp,h (x))2>, (4.30)

= 40?23 + 2(1 — 2aw)z + (—22) (4.31)

=2 (2% + (1 — 2aw)) v — 2z (4.32)

& 0= 2022 + (1 — 2aw)x — 2 (4.33)
@Oéx?’—l—%x % (4.34)
=2+ ar+ 8 (4.35)



4 Quadratic functions

Let t be defined as

t:= i/\/?) (a3 +275%) — 903
I will make use of the following identities:

(1—iv3)? = —2(1 +4V3)
(1+iv3)? = —2(1 —iV/3)
(14iV3)3 = -8

Case 2.1: 4a3 + 2752 > 0: One solution of Equation is

¢ V5
xr = 3 —
/18 t

When you insert this in Equation m you getﬂ

3
0 1 t Y %a t Y %a + 3
V18 t 3/18 t
3/2 3/2 3/2
t 5 t o\ 3% t \@a 9 3% 3 t
=\ - +3 — + « —
(m) (\3/@) ; ({"/ﬁ)( ; ) —( ; ) i
B 32 {3 3 {507 248 ¢ VL
- - 3 ta - +8
18 /182 ¢ 18  t2 3 318 t
2
£ VI8l V12 20° t {’/;a s
= — — - o _
18 /182 V18t 3t3 /18 t
. 3/2
t3 to V202 2a3 t v/ 5o
=8 T o 38 T e +8
18 Y18 /3t 3t 18 t
_P_te 207 o g
18 Y18 3P Y18
t3 203
BT
% — 1203 + p18¢3
N 18¢3

Now only go on calculating with the numerator. Start with resubstituting ¢:

0

(

= (V3 (40® +2782))* + (98)* — 120° — (2-9) - 95
3- (403 +276%) — 8182 — 120°
0

2Remember: (a — b)* = a® — 3a%b + 3ab® — b°

10

V3 (403 1 2762) — 98) — 1203 + B18(+/3 - (4ad + 2752 — 98)

(4.36)

(4.37)

(4.38)

(4.39)



4 Quadratic functions

Case 2.2: One solution is

(14+iV3)a (1 —iV3)t

V12t 2+v/18

We will verify it in multiple steps. First, get 23:

B (14 iv3)a 3_3 (14 iv3)a ’ (1 —iV3)t
S\ Y12 V12 - ¢ 2v/18

s <(1+i\/§)o¢ ((1—i\/§)t>2 ((1 —i\/g)t>3

2/18

-0 -@

Now simplify the summands of z3:

= ((1 —i—z'\/g)a)

V12t
—8a3
123
—2a3
ECE
@ - 3 (1+14v3)a ’ (1 —4v/3)t
a V121 2¢/18

_ =3a%(—2(1 —iV3))(1 —iV3)t
a 123/21.32 . 29/2. 32
6a2t(—2(1 +iv/3))
B 1262/12
—a?(1 +iV/3)
tv/12
o3 ((1 +i\/§)a> ((1 —z’ﬁ)t)z
Vi2-t 2V/18
3at(1+4iv/3)(—2(1 4+ iv/3))
4-v12-182
—at(—2(1 —iv/3))
2v/12-4-3
_at(l—iV3)
V2t 32
Cat(l—iv3
- v
(1 —iv3)t ’
(=8)t°
8-18
t3

18

11

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)
(4.53)
(4.54)
(4.55)
(4.56)
(4.57)
(4.58)
(4.59)
(4.60)
(4.61)
(4.62)

(4.63)

(4.64)



4 Quadratic functions

Now get back to the original equation:

0=2%+az+ B
—2a% (1 +3i)  at(l—-+3i) 3
= +1s

+ +
3t3 /12 218

ta (1+iv3)a  (1—iv3)t L5
V12 -t 2v/18
—2a3 3
33 Tt B
—1203 +t5 + 18t3p
18t3

Now continue with only the numerator

0= —120° + (/3(4a3 + 2752) — 9B8)2 + 18(1/3(da® + 2752) —
— _120° + (3(4a 1 278%) 2. \/3(4a® 1+ 2752) - 95 + 818 )
+188(1/3(1a% + 2752) — 98)
Case 2.3: One solution is

(1-iv3)a  (1+iV3)t
Vi2-t 2v/18

The verification of this case is pretty much the same as for case 2.2.

xTr =

So the solution is given by

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)
(4.71)
(4.72)

b
s 1=~ (the symmetry axis)
a
b2
w:=yp+——c and z:=zp+ —
4a 2a
1 —2aw —z
a=— and ﬁ_2a2

t = \/\/3 (403 +2782) — 98
561 +\/ yp+4a ) +33S and if xp =xg and yp—{—%
2:_\/ yp‘i‘@— —§+OL'S

argmindp s(x) =

. b2
R T =2Tg ifzp =xg and yp + 1 —

3/2
t \@a

= 4 — if
.Tl m t xP#xS

I call this function Sy : { Quadratic functions } x R? — P(R).

12
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4 Quadratic functions
4.2 Defined on a closed interval [a,0] C R

Now the problem isn’t as simple as with constant and linear functions.

If one of the minima in Sa(P, f) is in [a, b], this will be the shortest distance as there are no
shorter distances.

If the function (defined on R) has only one shortest distance point x for the given P, it’s also
easy: The point in [a, b] that is closest to = will have the sortest distance.

So(f, P)Na,b] if So(f, P)N[a,b] # 0

arg min dp £ (x) — {a} if [So(f, P)|=1and Sao(f,P)>x<a
xe[a,bff {o} if |S2(f, P)| =1 and S3(f,P) >z >b
todo if |So(f, P)| = 2 and Sa(f, P) N [a,b] = 0

13



5 Cubic functions

5.1 Defined on R

Let f(z) =a-234+b-22 4+ c- 2+ d be a cubic function with a € R\ {0} and b,c,d € R be a
function.

Figure 5.1: Cubic functions

5.1.1 Calculate points with minimal distance

Theorem 5
There cannot be an algebraic solution to the problem of finding a closest point (x, f(z))
to a given point P when f is a polynomial function of degree 3 or higher.

Proof: Suppose you could solve the closest point problem for arbitrary cubic functions f =
az3 + bx? + cx + d and arbitrary points P = (xp,yp).

Then you could solve the following problem for z:

0% ((dps(@)7)’
= =21 + 22 — 2y, (f(2))" + (f(2)?)
=2f(z) f'(x) = 2y, f'(z) + 22 — 2z,
= f@) (@) —ypf'(@) + 2 -2
= f'@) (f(z) —yp) +2 — 7p

Polynomial of degree 5

A~ N /N /N
groor ov ov ot
TG = W N
— — — Y —

General algebraic equations of degree 5 don’t have a solution formula.E] Although here seems

LTODO: Quelle

14



5 Cubic functions

to be more structure, the resulting algebraic equation can be almost any polynomial of degree

58

0=f'(z) (f(x) —yp) + (x — p)

_ 9.2 .5 4 2y ,.3 _ 2

= 3a~ x’ + 5(~Lb3: +2(2ac+b°)x +§(ad+i)f ayplx

=a b =:c d
+(2bd +*+1—2by,)x+cd—cy, —x, (5.8)
e ay

0= azd + ba + é2® + da? + éx + f (5.9)
1. For any coefficient @ € R+ of 2° we can choose a such that we get a.

. For any coefficient b € R\ {0} of z* we can choose b such that we get b.
. With ¢, we can get any value of ¢ € R.

2
3
4.
5
6

With d, we can get any value of deR.

. With y,, we can get any value of € € R.

. With z,,, we can get any value of f eR.

The first restriction guaratees that we have a polynomial of degree 5. The second one is
necessary, to get a high range of €.

This means, that there is no solution formula for the problem of finding the closest points on
a cubic function to a given point, because if there was one, you could use this formula for
finding roots of polynomials of degree 5. |

5.1.2 Another approach

Just like we moved the function f and the point to get in a nicer situation, we can apply this
approach for cubic functions.

First, we move fy by % to the right, so

because

fi(x)

b (c—1) 203 be b
X 14 and P = 2
30 + 27a?2  3a + an 1= (ep 3a’yp)

filz) = az® +

Y (R NP (A DY RN B (5.10)
9\ 3, Y73, ‘A" 34 '

b b b3 2b b2 be
_ 3_ 2 2. 2 _ _
—a<x 33ax + 3( CL)a: - )—l—b(:c Sax—i-gaz)—i-ca: 3a+d (5.11)

2Thanks to Peter Kosinar on math.stackexchange.com| for this one

15
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5 Cubic functions

-3
Figure 5.2: Cubic functions with b=d =0
b2 b3
_ 3 2
207 b3
2
- — — 1
+ bx 30 T+ 9a? (5.13)
be
_ =44 5.14
+cx 3a + ( )
b2 b3 1 be
_ 3, 7 _ - N I
=azx +3a (1 2—|—c):c+9a2 (1 3) 3a+d (5.15)

5.1.3 Number of points with minimal distance

As this leads to a polynomial of degree 5 of which we have to find roots, there cannot be more
than 5 solutions.

5.1.4 Interpolation and approximation

Quadratic spline interpolation

You could interpolate the cubic function by a quadratic spline.

Bisection method

16



5 Cubic functions

Newtons method

One way to find roots of functions is Newtons method. It gives an iterative computation procedure
that can converge quadratically if some conditions are met:

Theorem 6 (local quadratic convergence of Newton’s method)
Let D C R" be open and f : D — R" € C*(R). Let 2* € D with f(z*) = 0 and the
Jaccobi-Matrix f’(z*) should not be invertable when evaluated at the root.

Then there is a sphere
K= Ky(a*) = {z € R" | |lr 2"l < p} € D
such that z* is the only root of f in K. Furthermore, the elements of the sequence

_ f'(an)

Tl = n f(zn)

are for every starting value zg € K again in K and
lim zp, = z*
n—oo

Also, there is a constant C' > 0 such that

l2* = 2]l = Clla* — @n||* for n € No||

The approach is extraordinary simple. You choose a starting value xy and compute

f'(zn)

Tp+l = Tn —

As soon as the values don’t change much, you are close to a root. The problem of this approach
is choosing a starting value that is close enough to the root. So we have to have a “good” initial
guess.

Quadratic minimization

17



5 Cubic functions

5.2 Defined on a closed interval [a,b] C R

18
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