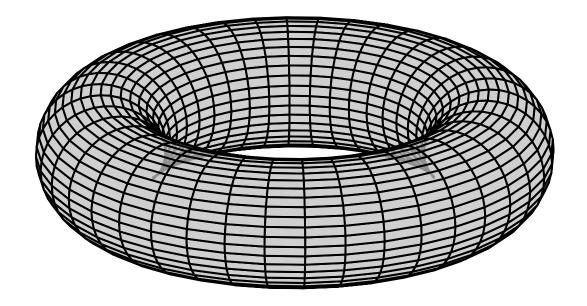
Einführung in die Geometrie und Topologie



Vorwort

Dieses Skript wurde im Wintersemester 2013/2014 von Martin Thoma geschrieben. Es beinhaltet die Mitschriften aus der Vorlesung von Prof. Dr. Herrlich sowie die Mitschriften einiger Übungen und Tutorien.

Das Skript ist kostenlos über martin-thoma.com/geotopo verfügbar. Wer es gerne in A5 (Schwarz-Weiß, Klebebindung) für ca. 10 Euro hätte, kann mir eine Email schicken (info@martin-thoma.de).

Danksagungen

An dieser Stelle möchte ich Herrn Prof. Dr. Herrlich für einige Korrekturvorschläge und einen gut strukturierten Tafelanschrieb danken, der als Vorlage für dieses Skript diente. Tatsächlich basiert die Struktur dieses Skripts auf der Vorlesung von Herrn Prof. Dr. Herrlich und ganze Abschnitte konnten direkt mit LATEX umgesetzt werden. Vielen Dank für die Erlaubnis, Ihre Inhalte in diesem Skript einbauen zu dürfen!

Vielen Dank auch an Frau Lenz und Frau Randecker, die es mir erlaubt haben, ihre Übungsaufgaben und Lösungen zu benutzen.

Jérôme Urhausen hat durch Verbesserungsvorschläge und Beweise zu einer Qualitätssteigerung am Skript beigetragen und meine Tutorin Sarah hat mir viele Fragen per Email und nach dem Tutorium beantwortet. Danke!

Was ist Topologie?

Die Kugeloberfläche S^2 lässt sich durch strecken, stauchen und umformen zur Würfeloberfläche oder der Oberfläche einer Pyramide verformen, aber nicht zum \mathbb{R}^2 oder zu einem Torus T^2 . Für den \mathbb{R}^2 müsste man die Oberfläche unendlich ausdehnen und für einen Torus müsste man ein Loch machen.

Erforderliche Vorkenntnisse

Es wird ein sicherer Umgang mit den Quantoren (\forall, \exists) , Mengenschreibweisen $(\cup, \cap, \setminus, \emptyset, \mathbb{R}, \mathcal{P}(M))$ und ganz allgemein formaler Schreibweise vorausgesetzt. Auch die Beweisführung mittels Widerspruchsbeweisen sollte bekannt sein und der Umgang mit komplexen Zahlen \mathbb{C} , deren Betrag, Folgen und Häufungspunkten nicht weiter schwer fallen. Diese Vorkenntnisse werden vor allem in "Analysis I" vermittelt.

Außerdem wird vorausgesetzt, dass (affine) Vektorräume, Faktorräume, lineare Unabhängigkeit, der Spektralsatz und der projektive Raum $\mathcal{P}(\mathbb{R})$ aus "Lineare Algebra I" bekannt sind. In "Lineare Algebra II" wird der Begriff der Orthonormalbasis eingeführt.

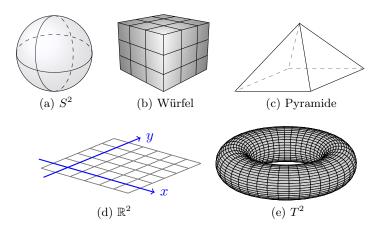


Abbildung 0.1: Beispiele für verschiedene Formen

Obwohl es nicht vorausgesetzt wird, könnte es von Vorteil sein "Einführung in die Algebra und Zahlentheorie" gehört zu haben.

Inhaltsverzeichnis

1	Topologische Grundbegriffe		;	3
	1.1 Topologische Räume			3
	1.2 Metrische Räume			7
	1.3 Stetigkeit		. !	9
	1.4 Zusammenhang		. 1	2
	1.5 Kompaktheit		. 1	4
	1.6 Wege und Knoten			
	Übungsaufgaben		. 2	2
2	Mannigfaltigkeiten und Simplizialkomplexe		2	
	2.1 Topologische Mannigfaltigkeiten			
	2.2 Differenzierbare Mannigfaltigkeiten			
	2.3 Simplizialkomplex			
	Übungsaufgaben		4	2
3	Fundamentalgruppe und Überlagerungen		4	3
	3.1 Homotopie von Wegen		4	3
	3.2 Fundamentalgruppe			
	3.3 Überlagerungen			
	3.4 Gruppenoperationen		6	0
4	Euklidische und nichteuklidische Geometrie		6	
	4.1 Axiome für die euklidische Ebene			
	Weitere Eigenschaften einer euklidischen Ebene			
	4.2.1 Flächeninhalt			
	4.3 Hyperbolische Geometrie			
	Übungsaufgaben		. 8	3
5	Krümmung		8	
	5.1 Krümmung von Kurven			
	Tangentialebene			
	5.3 Gauß-Krümmung			
	5.4 Erste und zweite Fundamentalform		. 8	9
Lö	ungen der Übungsaufgaben		9	4
Bi	quellen		10	0
ΑŁ	ürzungsverzeichnis		10	1
Anhang: Definitionen und Sätze				2
Symbolyerzeichnis				3

2 Inhaltsverzeichnis

105

Stichwortverzeichnis

1 Topologische Grundbegriffe

1.1 Topologische Räume

Definition 1

Ein **topologischer Raum** ist ein Paar (X,\mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von \mathfrak{T} heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.

Bemerkung 1 (Mengen, die offen & abgeschlossen sind, existieren)

Betrachte \emptyset und X mit der "trivialen Topologie" $\mathfrak{T}_{triv} = \{\emptyset, X\}$.

Es gilt: $X \in \mathfrak{T}$ und $\emptyset \in \mathfrak{T}$, d. h. X und \emptyset sind offen. Außerdem $X^C = X \setminus X = \emptyset \in \mathfrak{T}$ und $X \setminus \emptyset = X \in \mathfrak{T}$, d. h. X und \emptyset sind als Komplement offener Mengen abgeschlossen.

Beispiel 1 (Topologien)

1) $X = \mathbb{R}^n$ mit der euklidischen Metrik.

$$U \subseteq \mathbb{R}^n$$
 offen \Leftrightarrow für jedes $x \in U$ gibt es $r > 0$,
sodass $\mathfrak{B}_r(x) = \{ y \in \mathbb{R}^n \mid d(x,y) < r \} \subseteq U$

Diese \mathfrak{B} Topologie wird auch "Standardtopologie des \mathbb{R}^{n} " genannt. Sie beinhaltet unter anderem alle offenen Kugeln, aber z. B. auch Schnitte zweier Kugeln mit unterschiedlichem Mittelpunkt (vgl. Definition 1.ii).

- 2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.
- 3) Für eine Menge X heißt $\mathfrak{T} = \mathcal{P}(X)$ "diskrete Topologie".
- 4) $X:=\mathbb{R},\mathfrak{T}_Z:=\{\ U\subseteq\mathbb{R}\ |\ \mathbb{R}\setminus U\ \text{endlich}\ \}\cup\{\ \emptyset\ \}$ heißt "Zariski-Topologie" Beobachtungen:
 - $U \in \mathfrak{T}_Z \Leftrightarrow \exists f \in \mathbb{R}[X]$, sodass $\mathbb{R} \setminus U = V(f) = \{ x \in \mathbb{R} \mid f(x) = 0 \}$
 - Es gibt keine disjunkten offenen Mengen in \mathfrak{T}_Z .

- 5) $X := \mathbb{R}^n, \mathfrak{T}_Z = \{U \subseteq \mathbb{R}^n | \text{Es gibt Polynome } f_1, \dots, f_r \in \mathbb{R}[X_1, \dots, X_n] \text{ sodass } \mathbb{R}^n \setminus U = V(f_1, \dots, f_r)\}$
- 6) $X := \{0,1\}, \mathfrak{T} = \{\emptyset, \{0,1\}, \{0\}\}\$ heißt "Sierpińskiraum". $\emptyset, \{0,1\}, \{1\}\$ sind dort alle abgeschlossenen Mengen.

Definition 2

Sei (X, \mathfrak{T}) ein topologischer Raum und $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Gilt eine Eigenschaft in einer Umgebung, so sagt man, dass die Eigenschaft lokal gilt.

Definition 3

Sei (X, \mathfrak{T}) ein topologischer Raum und $M \subseteq X$ eine Teilmenge.

a) $M^{\circ} := \{ x \in M \mid M \text{ ist Umgebung von } x \} = \bigcup_{\substack{U \subseteq M \\ U \subseteq \Im}} U \text{ heißt Inneres oder offener}$

Kern von M.

- b) $\overline{M}:=\bigcap_{\substack{M\subseteq A\\A\text{ abgeschlossen}}}A$ heißt abgeschlossene Hülle oder Abschluss von M.
- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.
- d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Beispiel 2

- 1) Sei $X = \mathbb{R}$ mit euklidischer Topologie und $M = \mathbb{Q}$. Dann gilt: $\overline{M} = \mathbb{R}$ und $M^{\circ} = \emptyset$
- 2) Sei $X = \mathbb{R}$ und M = (a, b). Dann gilt: $\overline{M} = [a, b]$
- 3) Sei $X = \mathbb{R}, \mathfrak{T} = \mathfrak{T}_Z$ und M = (a, b). Dann gilt: $\overline{M} = \mathbb{R}$

Definition 4

Sei (X,\mathfrak{T}) ein topologischer Raum.

- a) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Basis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von Elementen aus \mathfrak{B} ist.
- b) $S \subseteq \mathfrak{T}$ heißt **Subbasis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von endlichen Durchschnitten von Elementen aus S ist.

Beispiel 3 (Basis und Subbasis)

- 1) Jede Basis ist auch eine Subbasis, z.B. $S = \{ (a,b) \mid a,b \in \mathbb{R}, a < b \}$ ist für \mathbb{R} mit der Standardtopologie sowohl Basis als auch Subbasis.
- 2) Gegeben sei $X = \mathbb{R}^n$ mit euklidischer Topologie \mathfrak{T} . Dann ist

$$\mathfrak{B} = \{ B_r(x) \mid r \in \mathbb{Q}_{>0}, x \in \mathbb{Q}^n \}$$

ist eine abzählbare Basis von \mathfrak{T} .

3) Sei (X, \mathfrak{T}) ein topologischer Raum mit $X = \{0, 1, 2\}$ und $\mathfrak{T} = \{\emptyset, \{0\}, \{0, 1\}, X\}$. Dann ist $S = \{\emptyset, \{0, 1\}, \{0, 2\}\}$ eine Subbasis von \mathfrak{T} , da gilt:

- $\bullet \ \emptyset \in \mathcal{S}$
- $\{0\} = \{0,1\} \cap \{0,2\}$
- $\{0,1\} \in S$
- $X = \{0, 1\} \cup \{0, 2\}$

Allerings ist S keine Basis von (X, \mathfrak{T}) , da $\{0\}$ nicht als Vereinigung von Elementen aus S erzeugt werden kann.

Bemerkung 2

Sei X eine Menge und $S \subseteq \mathcal{P}(X)$. Dann gibt es genau eine Topologie \mathfrak{T} auf X, für die S Subbasis ist.

Definition 5

Sei (X,\mathfrak{T}) ein topologischer Raum und $Y\subseteq X.$

 $\mathfrak{T}_Y := \{ U \cap Y \mid U \in \mathfrak{T} \}$ ist eine Topologie auf Y.

 \mathfrak{T}_Y heißt **Teilraumtopologie** und (Y,\mathfrak{T}_Y) heißt ein **Teilraum** von (X,\mathfrak{T}) .

Die Teilraumtopologie wird auch Spurtopologie oder Unterraumtopologie genannt.

Definition 6

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$ Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times U_2 \subseteq U$ gilt.

 $\mathfrak{T} = \{ U \subseteq X_1 \times X_2 \mid U \text{ offen } \}$ ist eine Topologie auf $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offen in } X_i, i = 1, 2 \}$ ist eine Basis von \mathfrak{T} .

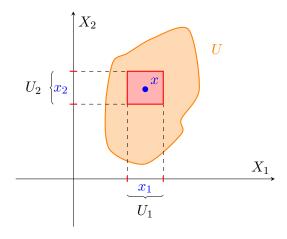


Abbildung 1.1: Zu $x=(x_1,x_2)$ gibt es Umgebungen U_1,U_2 mit $U_1\times U_2\subseteq U$

Beispiel 4 (Produkttopologien)

- 1) $X_1 = X_2 = \mathbb{R}$ mit euklidischer Topologie. \Rightarrow Die Produkttopologie auf $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ stimmt mit der euklidischen Topologie auf \mathbb{R}^2 überein.
- 2) $X_1 = X_2 = \mathbb{R}$ mit Zariski-Topologie. \mathfrak{T} Produkttopologie auf \mathbb{R}^2 : $U_1 \times U_2$ (Siehe Abbildung 1.2)

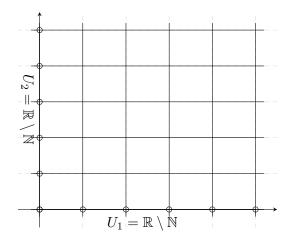


Abbildung 1.2: Zariski-Topologie auf \mathbb{R}^2

Definition 7

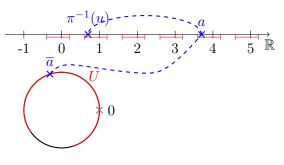
Sei X ein topologischer Raum, \sim eine Äquivalenz
relation auf $X, \overline{X} = X/_{\sim}$ sei die Menge der Äquivalenzklassen,
 $\pi: x \to \overline{x}, \quad x \mapsto [x]_{\sim}.$

$$\mathfrak{T}_{\overline{X}} := \left\{ U \subseteq \overline{X} \mid \pi^{-1}(U) \in \mathfrak{T}_X \right\}$$

 $(\overline{X}, \mathfrak{T}_{\overline{X}})$ heißt **Quotiententopologie**.

Beispiel 5

$$X = \mathbb{R}, a \sim b :\Leftrightarrow a - b \in \mathbb{Z}$$



$$0 \sim 1$$
, d. h. $[0] = [1]$

Beispiel 6

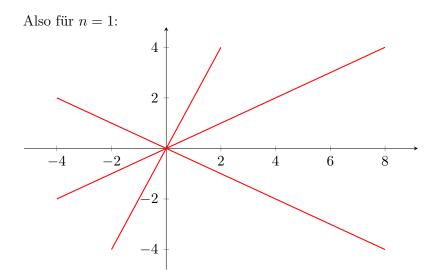
Sei $X = \mathbb{R}^2$ und $(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1 - x_2 \in \mathbb{Z}$ und $y_1 - y_2 \in \mathbb{Z}$. Dann ist $X/_{\sim}$ ein Torus.

Beispiel 7 (Projektiver Raum)

$$X=\mathbb{R}^{n+1}\setminus\{\,0\,\}\,,\quad x\sim y\Leftrightarrow \exists\lambda\in\mathbb{R}^{ imes}\ \mathrm{mit}\ y=\lambda x$$
 $\Leftrightarrow x\ \mathrm{und}\ y\ \mathrm{liegen}\ \mathrm{auf}\ \mathrm{der}\ \mathrm{gleichen}$ Ursprungsgerade

$$\overline{X} = \mathcal{P}^n(\mathbb{R})$$

7 1.2. METRISCHE RÄUME



1.2 Metrische Räume

Definition 8

Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}_0^+$ heißt **Metrik**, wenn gilt:

(i) Definitheit: $d(x,y) = 0 \Leftrightarrow x = y \quad \forall x, y \in X$

(ii) Symmetrie: $d(x,y) = d(y,x) \quad \forall x,y \in X$

(iii) Dreiecksungleichung: $d(x,z) \le d(x,y) + d(y,z) \quad \forall x,y,z \in X$

Das Paar (X, d) heißt ein **metrischer Raum**.

Bemerkung 3

Sei (X, d) ein metrischer Raum und

$$\mathfrak{B}_r(x) := \{ y \in X \mid d(x,y) < r \} \text{ für } x \in X, r \in \mathbb{R}^+$$

 $\mathfrak{B} = \{ \mathfrak{B}_r(x) \subseteq \mathcal{P}(X) \mid x \in X, r \in \mathbb{R}^+ \}$ ist Basis einer Topologie auf X.

Definition 9

Seien (X,d_X) und (Y,d_Y) metrische Räume und $\varphi:X\to Y$ eine Abbildung mit

$$\forall x_1, x_2 \in X : d_X(x_1, x_2) = d_Y(\varphi(x_1), \varphi(x_2))$$

Dann heißt φ eine **Isometrie** von X nach Y.

Beispiel 8 (Skalarprodukt erzeugt Metrik)

Sei V ein euklidischer oder hermitescher Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann wird V durch $d(x,y) := \sqrt{\langle x-y, x-y \rangle}$ zum metrischen Raum.

Beispiel 9 (diskrete Metrik)

Sei X eine Menge. Dann heißt

$$d(x,y) = \begin{cases} 0 & \text{falls } x = y \\ 1 & \text{falls } x \neq y \end{cases}$$

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.

8 1.2. METRISCHE RÄUME

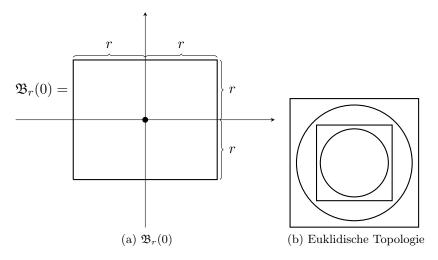


Abbildung 1.3: Veranschaulichungen zur Metrik d

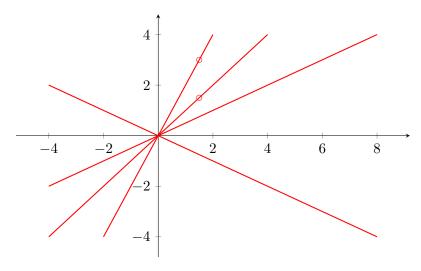
Beispiel 10

 $X = \mathbb{R}^2 \text{ und } d((x_1, y_1), (x_2, y_2)) := \max(\|x_1 - x_2\|, \|y_1 - y_2\|) \text{ ist Metrik.}$

Beobachtung: d erzeugt die euklidische Topologie.

Beispiel 11 (SNCF-Metrik¹)

$$X = \mathbb{R}^2$$



Definition 10

Ein topologischer Raum X heißt **hausdorffsch**, wenn es für je zwei Punkte $x \neq y$ in X Umgebungen U_x um x und U_y um y gibt, sodass $U_x \cap U_y = \emptyset$.

Bemerkung 4 (Trennungseigenschaft)

Metrische Räume sind hausdorffsch, da

$$d(x,y) > 0 \Rightarrow \exists \varepsilon > 0 : \mathfrak{B}_{\varepsilon}(x) \cap \mathfrak{B}_{\varepsilon}(y) = \emptyset$$

Beispiel 12 (Topologische Räume und Hausdorff-Räume)

- 1) $(\mathbb{R}, \mathfrak{T}_Z)$ ist ein topologischer Raum, der nicht hausdorffsch ist.
- 2) $(\mathbb{R},\mathfrak{T})$ ist ein topologischer Raum, der hausdorffsch
 ist.

¹Diese Metrik wird auch "französische Eisenbahnmetrik" genannt.

9 1.3. STETIGKEIT

Bemerkung 5 (Eigenschaften von Hausdorff-Räumen)

Seien X, X_1, X_2 Hausdorff-Räume.

- a) Jeder Teilraum von X ist hausdorffsch.
- b) $X_1 \times X_2$ ist hausdorffsch.

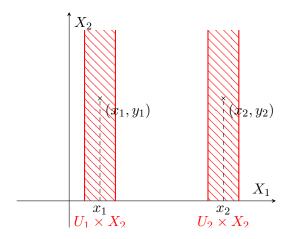


Abbildung 1.4: Wenn X_1, X_2 hausdorffsch sind, dann auch $X_1 \times X_2$

Definition 11

Sei X ein topologischer Raum und $(x)_{n\in\mathbb{N}}$ eine Folge in X. $x\in X$ heißt **Grenzwert** oder **Limes** von (x_n) , wenn es für jede Umgebung U von x ein n_0 gibt, sodass $x_n\in U$ für alle $n\geq n_0$.

Bemerkung 6

Ist X hausdorffsch, so hat jede Folge in X höchstens einen Grenzwert.

Beweis: Sei (x_n) eine konvergierende Folge und x und y Grenzwerte der Folge.

Da X hausdorffsch ist, gibt es Umgebungen U_x von x und U_y von y mit $U_x \cap U_y = \emptyset$ falls $x \neq y$. Da (x_n) gegen x und y konvergiert, existiert ein n_0 mit $x_n \in U_x \cap U_y$ für alle $n \geq n_0$ $\Rightarrow x = y$

1.3 Stetigkeit

Definition 12

Seien $(X, \mathfrak{T}_X), (Y, \mathfrak{T}_Y)$ topologische Räume und $f: X \to Y$ eine Abbildung.

- a) f heißt **stetig** : $\Leftrightarrow \forall U \in \mathfrak{T}_Y : f^{-1}(U) \in \mathfrak{T}_X$.
- b) f heißt **Homöomorphismus**, wenn f stetig ist und es eine stetige Abbildung $g: Y \to X$ gibt, sodass $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

Bemerkung 7²

Seien X, Y metrische Räume und $f: X \to Y$ eine Abbildung.

Dann gilt: f ist stetig \Leftrightarrow zu jedem $x \in X$ und jedem $\varepsilon > 0$ gibt es $\delta(x, \varepsilon) > 0$, sodass für alle $y \in X$ mit $d(x, y) < \delta$ gilt $d_Y(f(x), f(y)) < \varepsilon$.

²Es wird die Äquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Räumen gezeigt.

10 1.3. STETIGKEIT

Beweis: "⇒": Sei $x \in X, \varepsilon > 0$ gegeben und $U := \mathfrak{B}_{\varepsilon}(f(x))$.

Dann ist U offen in Y. $\stackrel{\text{Def. 12.a}}{=} f^{-1}(U)$ ist offen in X. Dann ist $x \in f^{-1}(U)$. $\Rightarrow \exists \delta > 0$, sodass $\mathfrak{B}_{\delta}(x) \subseteq f^{-1}(U)$ $\Rightarrow f(\mathfrak{B}_{\delta}(x)) \subseteq U$ $\Rightarrow \{ y \in X \mid d_X(x,y) < \delta \} \Rightarrow \text{Beh.}$ " \Leftarrow ": Sei $U \subseteq Y$ offen, $X \in f^{-1}(U)$.

Dann gibt es $\varepsilon > 0$, sodass $\mathfrak{B}_{\varepsilon}(f(x)) \subseteq U$ $\stackrel{\text{Vor.}}{=} \text{Es gibt } \delta > 0$, sodass $f(\mathfrak{B}_{\delta}(x)) \subseteq \mathfrak{B}_{\varepsilon}(f(x))$) $\Rightarrow \mathfrak{B}_{\delta}(x) \subseteq f^{-1}(\mathfrak{B}_{\varepsilon}(f(x))) \subseteq f^{-1}(U)$

Bemerkung 8

Seien X,Y topologische Räume und $f:X\to Y$ eine Abbildung. Dann gilt:

f ist stetig

 \Leftrightarrow für jede abgeschlossene Teilmenge $A \subseteq Y$ gilt : $f^{-1}(A) \subseteq X$ ist abgeschlossen.

Beispiel 13 (Stetige Abbildungen und Homöomorphismen)

- 1) Für jeden topologischen Raum X gilt: $id_X: X \to X$ ist Homöomorphismus.
- 2) Ist Y trivialer topologischer Raum, d. h. $\mathfrak{T}=\mathfrak{T}_{\mathrm{triv}},$ so ist jede Abbildung $f:X\to Y$ stetig.
- 3) Ist X diskreter topologischer Raum, so ist $f: X \to Y$ stetig für jeden topologischen Raum Y und jede Abbildung f.
- 4) Sei $X = [0, 1), Y = S^1 = \{ z \in \mathbb{C} \mid ||z|| = 1 \} \text{ und } f(t) = e^{2\pi i t}.$

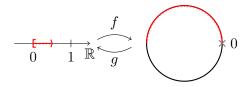


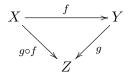
Abbildung 1.5: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht stetig ist.

Die Umkehrabbildung g ist nicht stetig, da $g^{-1}(U)$ nicht offen ist (vgl. Abbildung 1.5).

Bemerkung 9 (Verkettungen stetiger Abbildungen sind stetig)

Seien X, Y, Z topologische Räume, $f: X \to Y$ und $g: Y \to Z$ stetige Abbildungen.

Dann ist $g \circ f : X \to Z$ stetig.



Beweis: Sei $U \subseteq Z$ offen $\Rightarrow (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. $g^{-1}(U)$ ist offen in Y weil g stetig ist, $f^{-1}(g^{-1}(U))$ ist offen in X, weil f stetig ist.

Bemerkung 10

a) Für jeden topologischen Raum ist

$$\operatorname{Hom\"oo}(X) := \{ f : X \to X \mid f \text{ ist Hom\"oomorphismus } \}$$

eine Gruppe.

11 1.3. STETIGKEIT

- b) Jede Isometrie $f: X \to Y$ zwischen metrischen Räumen ist ein Homöomorphismus.
- c) Iso $(X) := \{ f : X \to X \mid f \text{ ist Isometrie} \}$ ist eine Untergruppe von Homöo(X) für jeden metrischen Raum X.

Bemerkung 11 (Projektionen sind stetig)

Seien X, Y topologische Räume. $\pi_X : X \times Y \to X$ und $\pi_Y : X \times Y \to Y$ die Projektionen $\pi_X : (x, y) \mapsto x$ und $\pi_Y : (x, y) \mapsto y$

Wird $X \times Y$ mit der Produkttopologie versehen, so sind π_X und π_Y stetig.

Beweis: Sei $U \subseteq X$ offen $\Rightarrow \pi_x^{-1}(U) = U \times Y$ ist offen in $X \times Y$.

Bemerkung 12

Sei X ein topologischer Raum, \sim eine Äquivalenzrelation auf X, $\overline{X} = X/_{\sim}$ der Bahnenraum versehen mit der Quotiententopologie, $\pi: X \to \overline{X}, x \mapsto [x]_{\sim}$.

Dann ist π stetig.

Beweis: Nach Definition ist $U \subseteq \overline{X}$ offen $\Leftrightarrow \pi^{-1}(U) \subseteq X$ offen.

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass π stetig wird.

Beispiel 14 (Stereographische Projektion)

 \mathbb{R}^n und $S^n \setminus \{N\}$ sind homöomorph für beliebiges $N \in S^n$. Es gilt:

$$S^{n} = \left\{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \right\}$$
$$= \left\{ x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}^{2} \right\}$$

O. B. d. A. sei $N = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$. Die Gerade durch N und P schneidet die Ebene H in genau

einem Punkt \hat{P} . P wird auf \hat{P} abgebildet.

$$f:S^n\setminus\{N\}\to\mathbb{R}^n$$
 genau ein Punkt
$$P\mapsto \overbrace{L_P\cap H}$$

wobei
$$\mathbb{R}^n = H = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \in \mathbb{R}^{n+1} \middle| x_{n+1} = 0 \right\}$$
 und L_P die Gerade in \mathbb{R}^{n+1} durch N

und P ist.

Sei $P = \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix}$, so ist $x_{n+1} < 1$, also ist L_P nicht parallel zu H. Also schneiden sich L_P

und H in genau einem Punkt \hat{P} .

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.

12 1.4. ZUSAMMENHANG

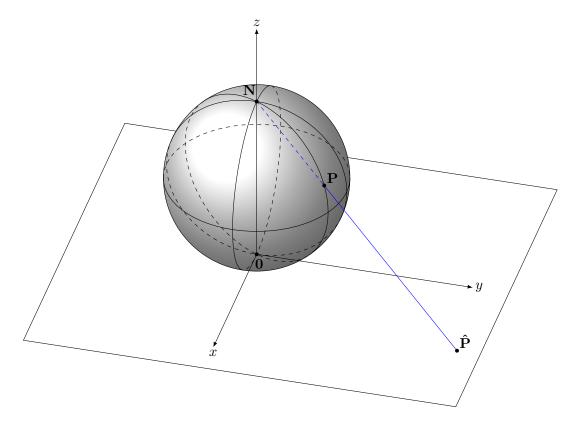


Abbildung 1.6: Visualisierung der stereographischen Projektion

1.4 Zusammenhang

Definition 13

Ein Raum X heißt **zusammenhängend**, wenn es keine offenen, nichtleeren Teilmengen U_1, U_2 von X gibt mit $U_1 \cap U_2 = \emptyset$ und $U_1 \cup U_2 = X$.

Bemerkung 13

X ist zusammenhängend \Leftrightarrow Es gibt keine abgeschlossenen, nichtleeren Teilmengen A_1, A_2 mit $A_1 \cap A_2 = \emptyset$ und $A_1 \cup A_2 = X$.

Bemerkung 14

Eine Teilmenge $Y\subseteq X$ heißt zusammenhängend, wenn Y als topologischer Raum mit der Teilraumtopologie zusammenhängend ist.

Beispiel 15 (Zusammenhang von Räumen)

1) \mathbb{R}^n ist mit der euklidischen Topologie zusammenhängend, denn:

Annahme: $\mathbb{R}^n = U_1 \cup U_2$ mit U_i offen, $U_i \neq \emptyset$ und $U_1 \cap U_2 = \emptyset$ existieren.

Sei $x \in U_1, y \in U_2$ und [x, y] die Strecke zwischen x und y. Dann ist $U_1 \cap [x, y]$ die Vereinigung von offenen Intervallen. Dann gibt es $z \in [x, y]$ mit $z \in \partial(U_1 \cap [x, y])$, aber $z \notin U_1 \Rightarrow z \in U_2$. In jeder Umgebung von z liegt ein Punkt von $U_1 \Rightarrow$ Widerspruch zu U_2 offen.

- 2) $\mathbb{R} \setminus \{0\}$ ist nicht zusammenhängend, denn $\mathbb{R} \setminus \{0\} = \mathbb{R}_{<0} \cup \mathbb{R}_{>0}$
- 3) $\mathbb{R}^2 \setminus \{0\}$ ist zusammenhängend.
- 4) $\mathbb{Q} \subsetneq \mathbb{R}$ ist nicht zusammenhängend, da $(\mathbb{Q} \cap \mathbb{R}_{<\sqrt{2}}) \cup (\mathbb{Q} \cap \mathbb{R}_{>\sqrt{2}}) = \mathbb{Q}$

13 1.4. ZUSAMMENHANG

- 5) $\{x\}$ ist zusammenhängend für jedes $x \in X$, wobei X ein topologischer Raum ist.
- 6) \mathbb{R} mit Zariski-Topologie ist zusammenhängend.

Bemerkung 15

Sei X ein topologischer Raum und $A\subseteq X$ zusammenhängend. Dann ist auch \overline{A} zusammenhängend.

Beweis: durch Widerspruch

Annahme: $\overline{A} = A_1 \cup A_2$, A_i abgeschlossen, $A_i \neq \emptyset$, $A_1 \cap A_2 = \emptyset$

$$\Rightarrow A = \underbrace{(A \cap A_1) \ \dot{\cup} \ (A \cap A_2)}_{\text{abgeschlossen abgeschlossen}}$$

Wäre
$$A \cap A_1 = \emptyset$$

 $\Rightarrow A \subseteq \overline{A} = A_1 \dot{\cup} A_2$
 $\Rightarrow A \subseteq A_2 \Rightarrow \overline{A} \subseteq A_2$
 $\Rightarrow A_1 = \emptyset$
 \Rightarrow Widerspruch zu $A_1 \neq \emptyset$
 $\Rightarrow A \cap A_1 \neq \emptyset$ und analog $A \cap A_2 \neq \emptyset$
 \Rightarrow Widerspruch zu A ist zusammenhängend.

Bemerkung 16

Sei X ein topologischer Raum und $A, B \subseteq X$ zusammenhängend.

Ist $A \cap B \neq \emptyset$, dann ist $A \cup B$ zusammenhängend.

Beweis: Sei $A \cup B = U_1 \cup U_2, U_i \neq \emptyset$ offen

$$\xrightarrow{\text{o. B. d. A.}} A = (A \cap U_1) \dot{\cup} (A \cap U_2) \text{ offen}$$

$$\xrightarrow{A \text{ zhgd.}} A \cap U_1 = \emptyset$$

$$\xrightarrow{A \cap B \neq \emptyset} U_1 \subseteq B$$

$$B = \underbrace{(B \cap U_1)}_{=U_1} \cup \underbrace{(B \cap U_2)}_{=\emptyset} \text{ ist unerlaubte Zerlegung.}$$

Definition 14

Sei X ein topologischer Raum.

Für $x \in X$ sei $Z(x) \subseteq X$ definiert durch

$$Z(x) := \bigcup_{\substack{A \subseteq X \text{zhgd.} \\ x \in A}} A$$

Z(x) heißt **Zusammenhangskomponente**.

Bemerkung 17

Sei X ein topologischer Raum. Dann gilt:

14 1.5. KOMPAKTHEIT

- a) Z(x) ist die größte zusammenhängende Teilmenge von X, die x enthält.
- b) Z(x) ist abgeschlossen.
- c) X ist disjunkte Vereinigung von Zusammenhangskomponenten.

Beweis:

- a) Sei $Z(x) = A_1 \cup A_2$ mit $A_i \neq \emptyset$ abgeschlossen.
 - O. B. d. A. sei $x \in A_1$ und $y \in A_2$. y liegt in einer zusammehängenden Teilmenge A, die auch x enthält. $\Rightarrow A = \underbrace{(A \cap A_1)}_{\ni x} \cup \underbrace{(A \cap A_2)}_{\ni y}$ ist unerlaubte Zerlegung.
- b) Nach Bemerkung 15 ist $\overline{Z(x)}$ zusammenhängend $\Rightarrow \overline{Z(x)} \subseteq Z(x) \Rightarrow Z(x) = \overline{Z(x)}$
- c) Ist $Z(y) \cap Z(x) \neq \emptyset \xrightarrow{\text{Bem. 16}} Z(y) \cup Z(x)$ ist zusammenhängend.

$$\Rightarrow Z(x) \cup Z(y) \subseteq Z(x) \Rightarrow Z(y) \subseteq Z(x)$$
$$\subseteq Z(y) \Rightarrow Z(x) \subseteq Z(y)$$

Bemerkung 18

Sei $f: X \to Y$ stetig. Ist $A \subseteq X$ zusammenhängend, so ist $f(A) \subseteq Y$ zusammenhängend.

Beweis: Sei $f(A) = U_1 \cup U_2, U_i \neq \emptyset$, offen, disjunkt.

$$\Rightarrow f^{-1}(f(A)) = f^{-1}(U_1) \cup f^{-1}(U_2)$$

$$\Rightarrow A = \underbrace{(A \cap f^{-1}(U_1))}_{\neq \emptyset} \cup \underbrace{(A \cap f^{-1}(U_2))}_{\neq \emptyset}$$

1.5 Kompaktheit

Definition 15

Sei X eine Menge und $\mathfrak{U} \subseteq \mathcal{P}(X)$.

 \mathfrak{U} heißt eine Überdeckung von X, wenn gilt:

$$\forall x \in X : \exists M \in \mathfrak{U} : x \in M$$

Definition 16

Ein topologischer Raum X heißt **kompakt**, wenn jede offene Überdeckung von X

$$\mathfrak{U} = \{ U_i \}_{i \in I} \text{ mit } U_i \text{ offen in } X$$

eine endliche Teilüberdeckung

$$\bigcup_{i \in J \subseteq I} U_i = X \text{ mit } |J| \in \mathbb{N}$$

besitzt.

1.5. KOMPAKTHEIT

Bemerkung 19

Das Einheitsintervall I := [0,1] ist kompakt bezüglich der euklidischen Topologie.

Beweis: Sei $(U_i)_{i \in J}$ eine offene Überdeckung von I.

Es genügt zu zeigen, dass es ein $\delta > 0$ gibt, sodass jedes Teilintervall der Länge δ von I in einem der U_i enthalten ist. Wenn es ein solches δ gibt, kann man I in endlich viele Intervalle der Länge δ unterteilen und alle U_i in die endliche Überdeckung aufnehmen, die Teilintervalle enthalten.

Angenommen, es gibt kein solches δ . Dann gibt es für jedes $n \in \mathbb{N}$ ein Intervall $I_n \subseteq [0,1]$ der Länge 1/n sodass $I_n \subsetneq U_i$ für alle $i \in J$.

Sei x_n der Mittelpunkt von I_n . Die Folge (x_n) hat einen Häufungspunkt $x \in [0,1]$. Dann gibt es $i \in J$ mit $x \in U_i$. Da U_i offen ist, gibt es ein $\varepsilon > 0$, sodass $(x - \varepsilon, x + \varepsilon) \subseteq U_i$. Dann gibt es n_0 , sodass gilt: $1/n_0 < \varepsilon/2$ und für unendlich viele $n_0 : |x - x_n| < \varepsilon/2$, also $n_0 : |x - x_n| < \varepsilon/2$, also $n_0 : |x - \varepsilon| \le U_i$ für mindestens ein $n \in \mathbb{N}$.

 \Rightarrow Widerspruch

Dann überdecke [0,1] mit endlich vielen Intervallen I_1, \ldots, I_d der Länge δ . Jedes I_j ist in U_{ij} enthalten.

 $\Rightarrow U_{j_1}, \dots, U_{j_d}$ ist endliche Teilüberdeckung von U.

Beispiel 16 (Kompakte Räume)

- 1) \mathbb{R} ist nicht kompakt.
- 2) (0,1) ist nicht kompakt. $U_n = (1/n, 1 1/n) \Rightarrow \bigcup_{n \in \mathbb{N}} U_n = (0,1)$
- 3) \mathbb{R} mit der Zariski-Topologie ist kompakt und jede Teilmenge von \mathbb{R} ist es auch.

Bemerkung 20

Sei X kompakter Raum, $A \subseteq X$ abgeschlossen. Dann ist A kompakt.

Beweis: Sei $(V_i)_{i \in I}$ offene Überdeckung von A.

Dann gibt es für jedes $i \in I$ eine offene Teilmenge $U_i \subseteq X$ mit $V_i = U_i \cap A$.

$$\Rightarrow A \subseteq \bigcup_{i \in I} U_i$$

$$\Rightarrow \mathfrak{U} = \{ U_i \mid i \in I \} \cup \{ X \setminus A \} \text{ ist offene Überdeckung von } X$$

$$\xrightarrow{X \text{ kompakt}} \text{ es gibt } i_1, \dots, i_n \in I, \text{ sodass } \bigcup_{j=1}^n U_{i_j} \cup (X \setminus A) = X$$

$$\Rightarrow \left(\bigcup_{j=1}^n U_{i_j} \cup (X \setminus A) \right) \cap A = A$$

$$\Rightarrow \bigcup_{j=1}^n \underbrace{(U_{i_j} \cap A)}_{=V_{i_j}} \cup \underbrace{((X \setminus A) \cap A)}_{=\emptyset} = A$$

$$\Rightarrow V_{i_1}, \dots, V_{i_n} \text{ überdecken } A.$$

³Dies gilt nicht für alle $n \ge n_0$, da ein Häufungspunkt nur eine konvergente Teilfolge impliziert.

⁴Sogar für unendlich viele.

16 1.5. KOMPAKTHEIT

Bemerkung 21

Seien X,Y kompakte topologische Räume. Dann ist $X\times Y$ mit der Produkttopologie kompakt.

Beweis: Sei $(W_i)_{i\in I}$ eine offene Überdeckung von $X\times Y$. Für jedes $(x,y)\in X\times Y$ gibt es offene Teilmengen $U_{x,y}$ von X und $V_{x,y}$ von Y sowie ein $i\in I$, sodass $U_{x,y}\times V_{x,y}\subseteq W_i$.

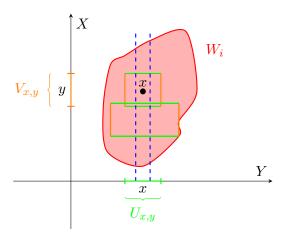


Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen $U_{x_0,y} \times V_{x_0,y}$ für festes x_0 und alle $y \in Y$ überdecken $\{x_0\} \times y$. Da Y kompakt ist, ist auch $\{x_0\} \times Y$ kompakt. Also gibt es $y_1, \ldots, y_{m(x_0)}$ mit $\bigcup_{i=1}^{m(x_0)} U_{x_0,y_i} \times V_{x_0,y_i} \supseteq \{x_0\} \times Y$.

Sei
$$U_{x_0} := \bigcap_{i=1}^{m(x)} U_{x_0,y_i}$$
. Da X kompakt ist, gibt es $x_1, \dots, x_n \in X$ mit $\bigcup_{j=1}^n U_{x_j} = X$

$$\Rightarrow \bigcup_{j=1}^k \bigcup_{i=1}^{m(x_j)} \underbrace{\left(U_{x_j,y_i} \times V_{x_j,y_i}\right)}_{\text{Ein grün-oranges Kästchen}} \supseteq X \times Y$$

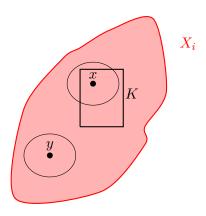
$$\Rightarrow \bigcup_j \bigcup_i W_i(x_j,y_i) = X \times Y$$

Bemerkung 22

Sei X ein Hausdorffraum und $K \subseteq X$ kompakt. Dann ist K abgeschlossen.

Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei $y \in X \setminus K$. Für jedes $x \in K$ seien U_x bzw. V_y Umgebungen von x bzw. von y, sodass $U_x \cap V_y = \emptyset$.



Da K kompakt ist, gibt es endlich viele $x_1, \ldots, x_n \in K$, sodass $\bigcup_{i=1}^m U_{x_i} \supseteq K$.

17 1.5. KOMPAKTHEIT

Sei
$$V := \bigcap_{i=1}^{n} V_{x_i}$$

$$\Rightarrow V \cap \left(\bigcup_{i=1}^{n} U_{x_i}\right) = \emptyset$$

$$\Rightarrow V \cap K = \emptyset$$

$$\Rightarrow V \text{ ist Überdeckung von } y, \text{ die ganz in } X \setminus K \text{ enthalten ist.}$$

$$\Rightarrow X \setminus K \text{ ist offen}$$

Damit ist K abgeschlossen.

Bemerkung 23

Seien X,Y topologische Räume, $f:X\to Y$ stetig. Ist $K\subseteq X$ kompakt, so ist $f(K)\subseteq Y$ kompakt.

Beweis: Sei $(V_i)_{i \in I}$ offene Überdeckung von f(K)

 $\xrightarrow{\underline{f} \text{ stetig}} (f^{-1}(V_i))_{i \in I} \text{ ist offene Überdeckung von } K$ $\xrightarrow{\underline{\text{Kompakt}}} \text{ es gibt } i_1, \dots, i_n, \text{ sodass } f^{-1}(V_{i_1}), \dots, f^{-1}(V_{i_n}) \text{ Überdeckung von } K \text{ ist.}$ $\Rightarrow f(f^{-1}(V_{i_1})), \dots, f(f^{-1}(V_{i_n})) \text{ überdecken } f(K).$

Es gilt:
$$f(f^{-1}(V)) = V \cap f(X)$$

Satz 1.1 (Heine-Borel)

Eine Teilmenge von \mathbb{R}^n oder \mathbb{C}^n ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist.

Beweis: " \Rightarrow ": Sei $K \subseteq \mathbb{R}^n$ (oder \mathbb{C}^n) kompakt.

Da \mathbb{R}^n und \mathbb{C}^n hausdorffsch sind, ist K nach Bemerkung 22 abgeschlossen. Nach Voraussetzung kann K mit endlich vielen offenen Kugeln von Radien 1 überdeckt werden $\Rightarrow K$ ist beschränkt.

" \Leftarrow " Sei $A \subseteq \mathbb{R}^n$ (oder \mathbb{C}^n) beschränkt und abgeschlossen.

Dann gibt es einen Würfel $W = \underbrace{[-N,N] \times \cdots \times [-N,N]}_{n \text{ mal}}$ mit $A \subseteq W$ bzw. "Polyzylinder" $Z = \{ \ (z_1,\ldots,z_n) \in \mathbb{C}^n \mid z_i \leq N \text{ für } i=1,\ldots,n \ \}$

Nach Bemerkung 21 und Bemerkung 19 ist W kompakt, also ist A nach Bemerkung 20 auch kompakt. Genauso ist Z kompakt, weil

$$\{z \in \mathbb{C} \mid |z| \le 1\}$$

homöomorph zu

$$\{ (x,y) \in \mathbb{R}^2 \mid ||(x,y)|| \le 1 \}$$

ist.

1.6 Wege und Knoten

Definition 17

Sei X ein topologischer Raum.

- a) Ein **Weg** in X ist eine stetige Abbildung $\gamma : [0,1] \to X$.
- b) γ heißt **geschlossen**, wenn $\gamma(1) = \gamma(0)$ gilt.
- c) γ heißt **einfach**, wenn $\gamma|_{[0,1)}$ injektiv ist.

Beispiel 17

Ist X diskret, so ist jeder Weg konstant, d. h. von der Form

$$\forall x \in [0,1] : \gamma(x) = c, \quad c \in X$$

Denn $\gamma([0,1])$ ist zusammenhängend für jeden Weg γ .

Definition 18

Ein topologischer Raum X heißt **wegzusammenhängend**, wenn es zu je zwei Punkten $x, y \in X$ einen Weg $\gamma : [0, 1] \to X$ gibt mit $\gamma(0) = x$ und $\gamma(1) = y$.

Bemerkung 24

Sei X ein topologischer Raum.

- a) X ist wegzusammenhängend $\Rightarrow X$ ist zusammenhängend
- b) X ist wegzusammenhängend $\not= X$ ist zusammenhängend

Beweis:

a) Sei X ein wegzusammenhängender topologischer Raum, A_1, A_2 nichtleere, disjunkte, abgeschlossene Teilmengen von X mit $A_1 \cup A_2 = X$. Sei $x \in A_1, y \in A_2, \gamma : [0, 1] \to X$ ein Weg von x nach y.

Dann ist $C := \gamma([0,1]) \subseteq X$ zusammenhängend, weil γ stetig ist.

$$C = \underbrace{(C \cap A_1)}_{\ni x} \cup \underbrace{(C \cap A_2)}_{\ni y}$$

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen \Rightarrow Widerspruch

b) Sei
$$X = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \lor y = 1 + 2 \cdot e^{-\frac{1}{10}x} \right\}.$$

Abbildung 1.8a veranschaulicht diesen Raum.

Sei $U_1 \cup U_2 = X, U_1 \neq U_2 = \emptyset, U_i$ offen. $X = C \cup S$. Dann ist $C \subseteq U_1$ oder $C \subseteq U_2$, weil C und S zusammenhängend sind.

Also ist $C = U_1$ und $S = U_2$ (oder umgekehrt).

Sei $y \in C = U_1, \varepsilon > 0$ und $\mathfrak{B}_{\varepsilon}(y) \subseteq U_1$ eine Umgebung von y, die in U_1 enthalten ist.

Aber: $\mathfrak{B}_{\varepsilon}(y) \cap S \neq \emptyset \Rightarrow$ Widerspruch $\Rightarrow X \cup S$ ist zusammenhängend, aber nicht wegzusammenhängend.

Beispiel 18 (Hilbert-Kurve)

Es gibt stetige, surjektive Abbildungen $[0,1] \to [0,1] \times [0,1]$. Ein Beispiel ist die in Abbildung 1.9 dargestellte Hilbert-Kurve.

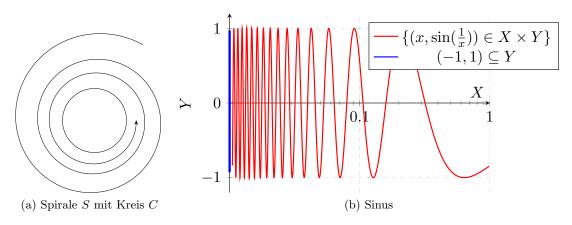


Abbildung 1.8: Beispiele für Räume, die zusammenhängend, aber nicht wegzusammenhängend sind.

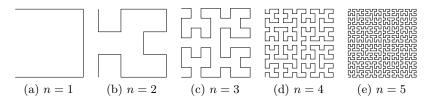


Abbildung 1.9: Hilbert-Kurve

Definition 19

Sei X ein topologischer Raum. Eine (geschlossene) **Jordankurve** in X ist ein Homöomorphismus $\gamma:[0,1]\to C\subseteq X$ bzw. $\gamma:S^1\to C\subseteq X$.

Satz 1.2 (Jordanscher Kurvensatz)

Ist $C = \gamma([0,1])$ eine geschlossene Jordankurve in \mathbb{R}^2 , so hat $\mathbb{R}^2 \setminus C$ genau zwei Zusammenhangskomponenten, von denen eine beschränkt ist und eine unbeschränkt.

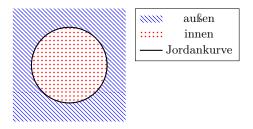


Abbildung 1.10: Die unbeschränkte Zusammenhangskomponente wird häufig inneres, die beschränkte äußeres genannt.

Beweis: ist technisch mühsam und wird hier nicht geführt. Er kann in "Algebraische Topologie: Eine Einführung" von R. Stöcker und H. Zieschang auf S. 301f (ISBN 978-3519122265) nachgelesen werden.

Idee: Ersetze Weg C durch Polygonzug.

Definition 20

Eine geschlossene Jordankurve in \mathbb{R}^3 heißt **Knoten**.

Beispiel 19 (Knoten)

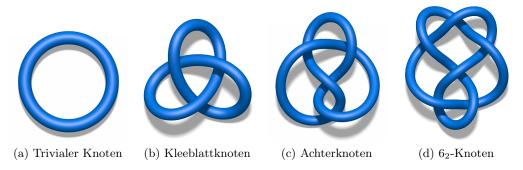


Abbildung 1.11: Beispiele für verschiedene Knoten

Definition 21

Zwei Knoten $\gamma_1, \gamma_2: S^1 \to \mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung

$$H: S^1 \times [0,1] \to \mathbb{R}^3$$

gibt mit

$$H(z,0) = \gamma_1(z) \quad \forall z \in S^1$$

 $H(z,1) = \gamma_2(z) \quad \forall z \in S^1$

und für jedes feste $t \in [0, 1]$ ist

$$H_z: S^1 \to \mathbb{R}^3, z \mapsto H(z,t)$$

ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Definition 22

Sei $\gamma:[0,1]\to\mathbb{R}^3$ ein Knoten, E eine Ebene und $\pi:\mathbb{R}^3\to E$ eine Projektion auf E.

 π heißt **Knotendiagramm** von γ , wenn gilt:

$$\left|\pi^{-1}(x)\right| \le 2 \quad \forall x \in \pi(\gamma)$$

Ist $(\pi|_{\gamma([0,1])})^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn gilt:

$$\exists \lambda > 1 : (y_1 - x) = \lambda (y_2 - x)$$

Satz 1.3 (Satz von Reidemeister)

Zwei endliche Knotendiagramme gehören genau dann zu äquivalenten Knoten, wenn sie durch endlich viele "Reidemeister-Züge" ineinander überführt werden können.

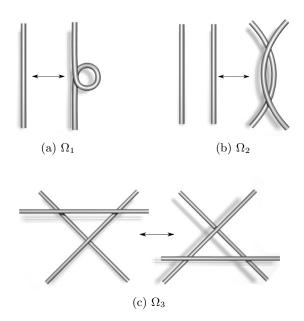


Abbildung 1.12: Reidemeister-Züge

Beweis: Durch sorgfältige Fallunterscheidung.⁵

Definition 23

Ein Knotendiagramm heißt **3-färbbar**, wenn jeder Bogen von D so mit einer Farbe gefärbt werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben auftreten.

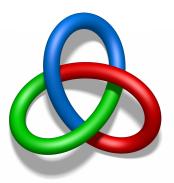


Abbildung 1.13: Ein 3-gefärber Kleeblattknoten

 $^{^5 {\}rm Siehe}$ "Knot Theory and Its Applications" von Kunio Murasugi. ISBN 978-0817638177.

Übungsaufgaben

Aufgabe 1 (Sierpińskiraum)

Es sei $X := \{0,1\}$ und $\mathfrak{T}_X := \{\emptyset, \{0\}, X\}$. Dies ist der sogenannte Sierpińskiraum.

- (a) Beweisen Sie, dass (X, \mathfrak{T}_X) ein topologischer Raum ist.
- (b) Ist (X, \mathfrak{T}_X) hausdorffsch?
- (c) Ist \mathfrak{T}_X von einer Metrik erzeugt?

Aufgabe 2

Es sei \mathbb{Z} mit der von den Mengen $U_{a,b} := a + b\mathbb{Z} (a \in \mathbb{Z}, b \in \mathbb{Z} \setminus \{0\})$ erzeugten Topologie versehen.

Zeigen Sie:

- (a) Jedes $U_{a,b}$ und jede einelementige Teilmenge von \mathbb{Z} ist abgeschlossen.
- (b) $\{-1,1\}$ ist nicht offen.
- (c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Für jedes $i \in \mathbb{N}$ sei $P_i := \{0, 1\}$ mit der diskreten Topologie. Weiter Sei $P := \prod_{i \in \mathbb{N}} P_i$.

- (a) Wie sehen die offenen Mengen von P aus?
- (b) Was können Sie über den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

- (a) Ist $GL_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det(A) \neq 0 \}$ kompakt?
- (b) Ist $SL_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det(A) = 1 \}$ kompakt?
- (c) Ist $\mathcal{P}(\mathbb{R})$ kompakt?

Aufgabe 5 (Begriffe)

Definieren sie die Begriffe "Homomorphismus" und "Homöomorphismus".

Geben Sie, falls möglich, ein Beispiel für folgende Fälle an. Falls es nicht möglich ist, begründen Sie warum.

- 1) Ein Homomorphismus, der zugleich ein Homöomorphismus ist,
- 2) ein Homomorphismus, der kein Homöomorphismus ist,

3) ein Homöomorphismus, der kein Homomorphismus ist

2 Mannigfaltigkeiten und Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 24

Sei (X, \mathfrak{T}) ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine *n*-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \in \mathfrak{T}$ und $\varphi : U \to V$ Homöomorphismus von U auf eine offene Teilmenge $V \subseteq \mathbb{R}^n$.
- b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.
- c) X heißt (topologische) n-dimensionale **Mannigfaltigkeit**, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Anschaulich ist also ein n-dimensionale Mannigfaltigkeit lokal dem \mathbb{R}^n ähnlich.

Bemerkung 25 (Mächtigkeit von Mannigfaltigkeiten)

Jede Mannigfaltigkeit ist mindestens so mächtig wie \mathbb{R} .

Beweis: Sei (X, \mathfrak{T}) ein topologischer Raum und (U, φ) mit $U \in \mathfrak{T}$ und $\varphi : U \to V \subseteq \mathbb{R}^n$, wobei V offen und φ ein Homöomorphismus ist, eine Karte auf X.

Da jede offene Teilmenge des \mathbb{R}^n genauso mächtig ist wie der \mathbb{R}^n , φ als Homöomorphismus insbesondere bijektiv ist und Mengen, zwischen denen eine Bijektion existiert, gleich mächtig sind, ist U genauso mächtig wie der \mathbb{R}^n . Da jede Mannigfaltigkeit mindestens eine Karte hat, muss jede Mannigfaltigkeit X mindestens so mächtig sein wie der \mathbb{R}^n .

Bemerkung 26

- a) Es gibt surjektive, stetige Abbildungen $[0,1] \rightarrow [0,1] \times [0,1]$
- b) Für $n \neq m$ sind \mathbb{R}^n und \mathbb{R}^m nicht homö
omorph. Zum Beweis benutzt man den "Satz von der Gebietstreue" (Brouwer):

Ist $U \subseteq \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^n$ stetig und injektiv, so ist f(U) offen.

Ist n < m und \mathbb{R}^m homöomorph zu \mathbb{R}^n , so wäre

$$f: \mathbb{R}^n \to \mathbb{R}^m \to \mathbb{R}^n, \quad (x_1, \dots, x_n) \mapsto (x_1, x_2, \dots, x_n, 0, \dots, 0)$$

eine stetige injektive Abbildung. Also müsste $f(\mathbb{R}^n)$ offen sein \Rightarrow Widerspruch

Beispiel 20 (Mannigfaltigkeiten)

1) Jede offene Teilmenge $U \subseteq \mathbb{R}^n$ ist eine *n*-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte.

2) \mathbb{C}^n ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

$$(z_1,\ldots,z_n)\mapsto (\Re(z_1),\Im(z_1),\ldots,\Re(z_n),\Im(z_n))$$

3) $\mathcal{P}^n(\mathbb{R}) = (\mathbb{R}^{n+1} \setminus \{0\})/_{\sim} = S^n/_{\sim}$ und $\mathcal{P}^n(\mathbb{C})$ sind Mannigfaltigkeiten der Dimension n bzw. 2n, da gilt:

Sei $U_i := \{ (x_0 : \dots : x_n) \in \mathcal{P}^n(\mathbb{R}) \mid x_i \neq 0 \} \ \forall i \in 0, \dots, n.$ Dann ist $\mathcal{P}^n(\mathbb{R}) = \bigcup_{i=0}^n U_i$ und die Abbildung

$$U_i \to \mathbb{R}^n$$

$$(x_0 : \dots : x_n) \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_i}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

$$(y_1 : \dots : y_{i-1} : 1 : y_i : \dots : y_n) \longleftrightarrow (y_1, \dots, y_n)$$

ist bijektiv.

Was wird im Folgenden gemacht?

Die U_i mit i = 0, ..., n bilden einen n-dimensionalen Atlas:

$$x = (1:0:0) \in U_0 \to \mathbb{R}^2$$
 $x \mapsto (0,0)$
 $y = (0:1:1) \in U_2 \to \mathbb{R}^2$ $y \mapsto (0,1)$

Umgebung:
$$\mathfrak{B}_1(0,1) \to \{ (1:u:v) \mid ||(u,v)|| < 1 \} = V_1$$

Umgebung: $\mathfrak{B}_1(0,1) \to \{ (w:z:1) \mid w^2 + z^2 < 1 \} = V_2$

$$V_1 \cap V_2 = \emptyset$$
?

$$\begin{array}{l} (a:b:c) \in V_1 \cap V_2 \\ \Rightarrow a \neq 0 \text{ und } (\frac{b}{a})^2 + (\frac{c}{a})^2 < 1 \Rightarrow \frac{c}{a} < 1 \\ \Rightarrow c \neq 0 \text{ und } (\frac{a}{c})^2 + (\frac{b}{c})^2 < 1 \Rightarrow \frac{a}{c} < 1 \\ \Rightarrow \text{Widerspruch} \end{array}$$

4) $S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$ ist *n*-dimensionale Mannigfaltigkeit.

Karten:

Karten:
$$D_i := \{(x_1, \dots, x_{n+1}) \in S^n | x_i > 0\} \to \mathfrak{B}_1(\underbrace{0, \dots, 0})$$

$$C_i := \{(x_1, \dots, x_{n+1}) \in S^n | x_i < 0\}$$

$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, \cancel{x_i}, \dots, x_{n+1})^{\frac{1}{1}}$$

$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_{i-1}, \sqrt{1 - \sum_{k=1}^n x_k^2}, x_i, \dots, x_n), \text{ oder } -\sqrt{1 - \sum_{k=1}^n x_k^2} \text{ für } C_i$$

$$S^n = \bigcup_{i=1}^{n+1} (C_i \cup D_i)$$

Als kompakte Mannigfaltigkeit wird S^n auch "geschlossene Mannigfaltigkeit" genannt.

5) [0,1] ist keine Mannigfaltigkeit, denn: Es gibt keine Umgebung von 0 in [0,1], die homöomorph zu einem offenem Intervall ist.

 $^{^{1}}x_{i}$ wird rausgenommen

6) $V_1 = \{ (x, y) \in \mathbb{R}^2 \mid x \cdot y = 0 \}$ ist keine Mannigfaltigkeit.

Das Problem ist (0,0). Wenn man diesen Punkt entfernt, zerfällt der Raum in 4 Zusammenhangskomponenten. Jeder \mathbb{R}^n zerfällt jedoch in höchstens zwei Zusammenhangskomponenten, wenn man einen Punkt entfernt.

- 7) $V_2 = \{ (x, y) \in \mathbb{R}^2 \mid x^3 = y^2 \}$ ist eine Mannigfaltigkeit.
- $8) \ X = (\mathbb{R} \setminus \{ 0 \}) \cup (0_1, 0_2)$

$$U \subseteq X \text{ offen } \Leftrightarrow \begin{cases} U \text{ offen in } \mathbb{R} \setminus \{0\}, & \text{falls } 0_1 \notin U, 0_2 \in U \\ \exists \varepsilon > 0 : (-\varepsilon, \varepsilon) \subseteq U & \text{falls } 0_1 \in U, 0_2 \in U \end{cases}$$

Insbesondere sind $(\mathbb{R} \setminus \{0\}) \cup \{0_1\}$ und $(\mathbb{R} \setminus \{0\}) \cup \{0_2\}$ offen und homöomorph zu \mathbb{R} .

<u>Aber:</u> X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 0_1 und 0_2 .

9) $GL_n(\mathbb{R})$ ist eine Mannigfaltigkeit der Dimension n^2 , weil offene Teilmengen von \mathbb{R}^{n^2} eine Mannigfaltigkeit bilden.

Definition 25

Seien X, Y n-dimensionale Mannigfaltigkeiten, $U \subseteq X$ und $V \subseteq Y$ offen, $\Phi : U \to V$ ein Homöomorphismus $Z = (X \dot{\cup} Y)/_{\sim}$ mit der von $u \sim \Phi(u) \ \forall u \in U$ erzeugten Äquivalenzrelation und der von \sim induzierten Quotiententopologie.

Z heißt **Verklebung** von X und Y längs U und V. Z besitzt einen Atlas aus n-dimensionalen Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Bemerkung 27

Sind X, Y Mannigfaltigkeiten der Dimension n bzw. m, so ist $X \times Y$ eine Mannigfaltigkeit der Dimension n+m.

Beweis: Produkte von Karten sind Karten.

Beispiel 21

Mannigfaltigkeiten mit Dimension 1:

- 1) Offene Intervalle, \mathbb{R} , (0,1) sind alle homöomorph
- 2) S^1

Mannigfaltigkeiten mit Dimension 2:

- $1) \mathbb{R}^2$
- 2) S^2 (0 Henkel)
- 3) T^2 (1 Henkel)
- 4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

Bemerkung 28

Sei $n \in \mathbb{N}, F : \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar und $X = V(F) := \{ x \in \mathbb{R}^n \mid F(x) = 0 \}$ das "vanishing set".

Dann gilt:

Abbildung 2.1: Zweifachtorus

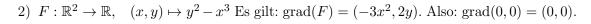
- a) X ist abgeschlossen in \mathbb{R}^n
- b) Ist $grad(F)(X) \neq 0 \quad \forall x \in X$, so ist X eine Mannigfaltigkeit der Dimension n-1.

Beweis:

- a) Sei $y \in \mathbb{R}^n \setminus V(F)$. Weil F stetig ist, gibt es $\delta > 0$, sodass $F(\mathfrak{B}_{\delta}(y)) \subseteq \mathfrak{B}_{\varepsilon}(F(y))$ mit $\varepsilon = \frac{1}{2} ||F(y)||$. Folgt $\mathfrak{B}_{\delta}(y) \cap V(F) = \emptyset \Rightarrow \mathbb{R}^n \setminus V(F)$ ist offen.
- b) Sei $x \in X$ mit $\operatorname{grad}(F)(x) \neq 0$, also o. B. d. A. $\frac{\partial F}{\partial X_1}(x) \neq 0$, $x = (x_1, \dots, x_n)$, $x' := (x_2, \dots, x_n) \in \mathbb{R}^{n-1}$. Der Satz von der impliziten Funktion liefert nun: Es gibt Umgebungen U von x' und differenzierbare Funktionen $g: U \to \mathbb{R}$, sodass $G: U \to \mathbb{R}^n$, $u \mapsto (g(u), u)$ eine stetige Abbildung auf eine offene Umgebung V von x in X ist.

Beispiel 22

1) $F: \mathbb{R}^3 \to \mathbb{R}$, $(x,y,z) \mapsto x^2 + y^2 + z^2 - 1$, $V(F) = S^2$, $\operatorname{grad}(F) = (2x,2y,2z) \xrightarrow{\operatorname{Bem. 28.b}} S^n$ ist n-dimensionale Mannigfaltigkeit in \mathbb{R}^{n+1}



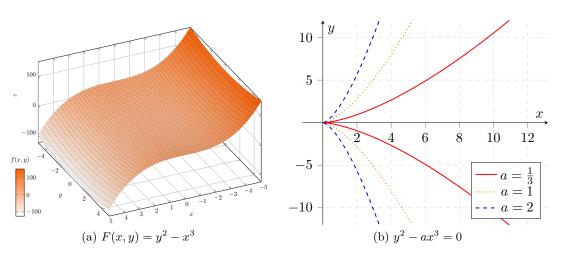


Abbildung 2.2: Rechts ist die Neilsche Parabel für verschiedene Parameter a.

Daher ist Bemerkung 28.b nicht anwendbar, aber V(F) ist trotzdem eine 1-dimensionale topologische Mannigfaltigkeit.

Definition 26

Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine offene Teilmenge von

$$R_{+,0}^n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0 \}$$

ist.

 $R_{+,0}^n$ ist ein "Halbraum".

<u>Hinweis:</u> Mannigfaltigkeiten mit Rand sind keine Mannigfaltigkeiten.

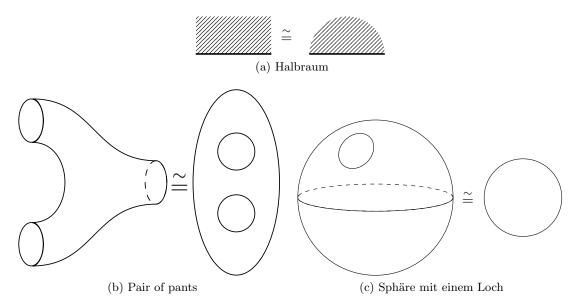


Abbildung 2.3: Beispiele für Mannigfaltigkeiten mit Rand

Definition 27

Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas \mathcal{A} . Dann heißt

$$\partial X := \bigcup_{(U,\varphi) \in \mathcal{A}} \{ x \in U \mid \varphi(x) = 0 \}$$

Rand von X.

 ∂X ist eine Mannigfaltigkeit der Dimension n-1.

Definition 28

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$

Für $i, j \in I$ mit $U_i, U_j \neq \emptyset$ heißt

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1}$$
$$\varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

Kartenwechsel oder Übergangsfunktion.

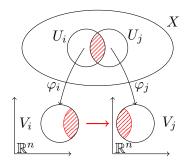


Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 29

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$.

- a) X heißt differenzierbare Mannigfaltigkeit der Klasse C^k , wenn jede Kartenwechselabbildung φ_{ij} , $i, j \in I$ k-mal stetig differenzierbar ist.
- b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannigfaltigkeit der Klasse C^{∞} ist.

Differenzierbare Mannigfaltigkeiten der Klasse C^{∞} werden auch glatt genannt.

Definition 30

Sei X eine differenzierbare Mannigfaltigkeit der Klasse C^k $(k \in \mathbb{N} \cup \{\infty\})$ mit Atlas $\mathcal{A} = (U_i, \varphi_i)_{i \in I}$.

- a) Eine Karte (U, φ) auf X heißt **verträglich** mit A, wenn alle Kartenwechsel $\varphi \circ \varphi_i^{-1}$ und $\varphi_i \circ \varphi^{-1}$ $(i \in I \text{ mit } U_i \cap U \neq \emptyset)$ differenzierbar von Klasse C^k sind.
- b) Die Menge aller mit \mathcal{A} verträglichen Karten auf X bildet einen maximalen Atlas der Klasse C^k . Er heißt C^k -Struktur auf X.

Eine C^{∞} -Struktur heißt auch differenzierbare Struktur auf X.

Bemerkung 29

Für $n \geq 4$ gibt es auf S^n mehrere verschiedene differenzierbare Strukturen, die sogenannten "exotische Sphären".

Definition 31

Seien X, Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. $m, x \in X$.

- a) Eine stetige Abbildung $f: X \to Y$ heißt **differenzierbar** in x (von Klasse C^k), wenn es Karten (U, φ) von X mit $x \in U$ und (V, ψ) von Y mit $f(U) \subseteq V$ gibt, sodass $\psi \circ f \circ \varphi^{-1}$ stetig differenzierbar von Klasse C^k in $\varphi(x)$ ist.
- b) f heißt differenzierbar (von Klasse C^k), wenn f in jedem $x \in X$ differenzierbar ist.
- c) f heißt **Diffeomorphismus**, wenn f differenzierbar von Klasse C^{∞} ist und es eine differenzierbare Abbildung $g: Y \to X$ von Klasse C^{∞} gibt mit $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

Bemerkung 30

Die Bedingung in Definition 31.a hängt nicht von den gewählten Karten ab.

Beweis: Seien (U', φ') und (V', ψ') Karten von X bzw. Y um x bzw. f(x) mit $f(U') \subseteq V'$.

$$\begin{array}{l} \Rightarrow \psi' \circ f \circ (\varphi')^{-1} \\ = \psi' \circ (\psi^{-1} \circ \psi) \circ f \circ (\varphi^{-1} \circ \varphi) \circ (\varphi')^{-1} \end{array}$$

ist genau dann differenzierbar, wenn $\psi \circ f \circ \varphi^{-1}$ differenzierbar ist.

Beispiel 23

 $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3$ ist kein Diffeomorphismus, aber Homö
omorphismus, da mit $g(x) := \sqrt[3]{x}$ gilt: $f \circ g = \mathrm{id}_{\mathbb{R}}, \quad g \circ f = \mathrm{id}_{\mathbb{R}}$

Bemerkung 31

Sei X eine glatte Mannigfaltigkeit. Dann ist

$$Diffeo(X) := \{ f : X \to X \mid f \text{ ist Diffeomorphismus } \}$$

eine Untergruppe von $Hom\ddot{o}o(X)$.

Definition 32

 $S \subseteq \mathbb{R}^3$ heißt **reguläre Fläche** : $\Leftrightarrow \forall s \in S \exists \text{ Umgebung } V(s) \subseteq \mathbb{R}^3 \exists U \subseteq \mathbb{R}^2 \text{ offen:}$ $\exists \text{ differenzierbare Abbildung } F: U \to V \cap S: \text{Rg}(J_F(u)) = 2 \quad \forall u \in U.$

F heißt (lokale) reguläre Parametrisierung von S.

$$F(u,v) = (x(u,v), y(u,v), z(u,v))$$

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

Beispiel 24

1) Rotationsflächen: Sei $r: \mathbb{R} \to \mathbb{R}_{>0}$ eine differenzierbare Funktion.

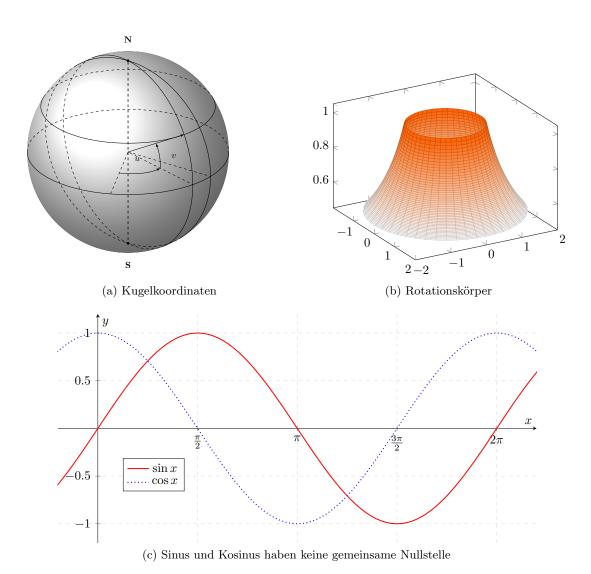
$$F: \mathbb{R}^2 \to \mathbb{R}^3 \quad (u, v) \mapsto (r(u)\cos(u), r(v)\sin(u), v)$$

$$J_F(u,v) = \begin{pmatrix} -r(v)\sin u & r'(v)\cos u \\ r(v)\cos u & r'(v)\sin u \\ 0 & 1 \end{pmatrix}$$

hat Rang 2 für alle $(u, v) \in \mathbb{R}^2$.

2) Kugelkoordinaten: $F: \mathbb{R}^2 \to \mathbb{R}^3$, $(u, v) \mapsto (R \cos v \cos u, R \cos v \sin u, R \sin v)$ Es gilt: $F(u, v) \in S_R^2$, denn

$$\begin{split} R^2\cos^2(v)\cos^2(u) + R^2\cos^2(v)\sin^2(u) + R^2\sin^2(v) \\ = &R^2(\cos^2(v)\cos^2(u) + \cos^2(v)\sin^2(u) + \sin^2(v)) \\ = &R^2\left(\cos^2(v)(\cos^2(u) + \sin^2(u)) + \sin^2(v)\right) \\ = &R^2\left(\cos^2(v) + \sin^2(v)\right) \\ = &R^2 \end{split}$$



Die Jacobi-Matrix

$$J_F(u,v) = \begin{pmatrix} -R\cos v \sin u & -R\sin v \cos u \\ R\cos v \cos u & -R\sin v \sin u \\ 0 & R\cos v \end{pmatrix}$$

hat Rang 2 für $\cos v \neq 0$. In N und S ist $\cos v = 0$

Bemerkung 32

Jede reguläre Fläche $S \subseteq \mathbb{R}^3$ ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis:

 $S \subseteq \mathbb{R}^3$ ist als reguläre Fläche eine 2-dimensionale Mannigfaltigkeit. Aus der Definition von regulären Flächen folgt direkt, dass Karten (U_i, F_i) und $(U_j \subseteq \mathbb{R}^2, F_j : \mathbb{R}^2 \to \mathbb{R}^3)$ von S mit $U_i \cap U_j \neq \emptyset$ existieren, wobei F_i und F_j nach Definition differenzierbare Abbildungen sind.

 $\underline{z}.\underline{Z}.$: $F_j^{-1} \circ F_i$ ist ein Diffeomorphismus.

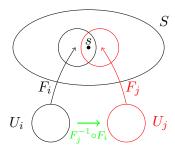


Abbildung 2.5: Reguläre Fläche S zum Beweis von Bemerkung 32

<u>Idee:</u> Finde differenzierbare Funktion $\widetilde{F_j^{-1}}$ in Umgebung W von s, sodass $\widetilde{F_j^{-1}}|_{S\cap W} = F_j^{-1}$. <u>Ausführung:</u> Sei $u_0 \in U_i$, $v_0 \in U_j$ mit $F_i(u_0) = s = F_j(v_0)$.

Da $Rg(J_{F_i}(v_0)) = 2$ ist, ist o. B. d. A.

$$\det\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} (v_0) \neq 0$$

and $F_j(u, v) = (x(u, v), y(u, v), z(u, v)).$

Definiere $\widetilde{F_j}:U_j\times\mathbb{R}\to\mathbb{R}^3$ durch

$$\widetilde{F_j}(u,v,t) := (x(u,v),y(u,v),z(u,v)+t)$$

Offensichtlich: $\widetilde{F_j}|_{U_j \times \{0\}} = F_j$

$$J_{\widetilde{F_j}} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & 0\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & 0\\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & 1 \end{pmatrix} \Rightarrow \det J_{\widetilde{F_j}}(v_0, 0) \neq 0$$

 $\xrightarrow{\text{Analysis II}}$ Es gibt Umgebungen W von F_j von $\widetilde{F_j}(v_0,0)=F_j(v_0)=s$, sodass $\widetilde{F_j}$ auf W eine differenzierbar Inverse F_j^{-1} hat.

Weiter gilt:

$$\begin{split} \widetilde{F_j}^{-1}|_{W\cap S} &= F_j^{-1}|_{W\cap S} \\ \Rightarrow F_j^{-1} \circ F_i|_{F_i^{-1}(W\cap S)} &= F_j^{-1} \circ F_i|_{F_i^{-1}(W\cap S)} \end{split}$$

ist differenzierbar.

Definition 33

Sei G eine Mannigfaltigkeit und (G, \circ) eine Gruppe.

a) G heißt **topologische Gruppe**, wenn die Abbildungen $\circ: G \times G \to G$ und $\iota: G \to G$ definiert durch

$$g \circ h := g \cdot h \text{ und } \iota(g) := g^{-1}$$

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G Lie-Gruppe, wenn (G, \circ) und (G, ι) differenzierbar sind.

Beispiel 25 (Lie-Gruppen)

- 1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.
- 2) $GL_n(\mathbb{R})$
- $(\mathbb{R}^{\times},\cdot)$
- 4) $(\mathbb{R}_{>0},\cdot)$
- 5) $(\mathbb{R}^n, +)$, denn $A \cdot B(i, j) = \sum_{k=1}^n a_{ik} b_{kj}$ ist nach allen Variablen differenzierbar $(A^{-1})(i, j) = \frac{\det(A_{ij})}{\det A}$

$$A_{ij} = \begin{pmatrix} a_{i1} & \dots & a_{in} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}$$

ist differenzierbar.

 $\det A_{ij}$ kann 0 werden, da:

$$\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$$

6)
$$\operatorname{SL}_n(\mathbb{R}) = \{ A \in \operatorname{GL}_n(\mathbb{R}) \mid \det(A) = 1 \}$$

Bemerkung 33

Ist G eine Lie-Gruppe und $g \in G$, so ist die Abbildung

$$l_g: G \to G$$
$$h \mapsto g \cdot h$$

ein Diffeomorphismus.

2.3 Simplizialkomplex

Definition 34

Seien $v_0, \ldots, v_k \in \mathbb{R}^n$ Punkte.

- a) v_0, \ldots, v_k sind **in allgemeiner Lage** \Leftrightarrow es gibt keinen (k-1)-dimensionalen affinen Untervektorraum, der v_0, \ldots, v_k enthält $\Leftrightarrow v_1 v_0, \ldots, v_k v_0$ sind linear unabhängig.
- b) $\operatorname{conv}(v_0,\ldots,v_k) := \left\{ \sum_{i=0}^k \lambda_i v_i \mid \lambda_i \geq 0, \sum_{i=0}^k \lambda_i = 1 \right\}$ heißt die **konvexe Hülle** von v_0,\ldots,v_k .

Definition 35

a) Sei $\Delta^n = \text{conv}(e_0, \dots, e_n) \subseteq \mathbb{R}^{n+1}$ die konvexe Hülle der Standard-Basisvektoren e_0, \dots, e_n .

Dann heißt Δ^n Standard-Simplex und n die Dimension des Simplex.

- b) Für Punkte v_0, \ldots, v_k im \mathbb{R}^n in allgemeiner Lage heißt $\Delta(v_0, \ldots, v_k) = \operatorname{conv}(v_0, \ldots, v_k)$ ein k-Simplex in \mathbb{R}^n .
- c) Ist $\Delta(v_0, \ldots, v_k)$ ein k-Simplex und $I = \{i_0, \ldots, i_r\} \subseteq \{0, \ldots, k\}$, so ist $s_{i_0, \ldots, i_r} := \operatorname{conv}(v_{i_0}, \ldots, v_{i_r})$ ein r-Simplex und heißt **Teilsimplex** oder **Seite** von Δ .

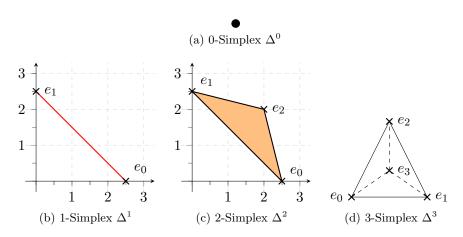


Abbildung 2.6: Beispiele für k-Simplexe

Definition 36

- a) Eine endliche Menge K von Simplizes im \mathbb{R}^n heißt (endlicher) **Simplizialkomplex**, wenn gilt:
 - (i) Für $\Delta \in K$ und $S \subseteq \Delta$ Teilsimplex ist $S \in K$.
 - (ii) Für $\Delta_1, \Delta_2 \in K$ ist $\Delta_1 \cap \Delta_2$ leer oder ein Teilsimplex von Δ_1 und von Δ_2 .
- b) $|K| := \bigcup_{\Delta \in K} \Delta$ (mit Teilraumtopologie) heißt **geometrische Realisierung** von K.
- c) Ist $d = \max \{ k \in \mathbb{N}_0 \mid K \text{ enthält } k\text{-Simplex} \}$, so heißt d die **Dimension** von K.

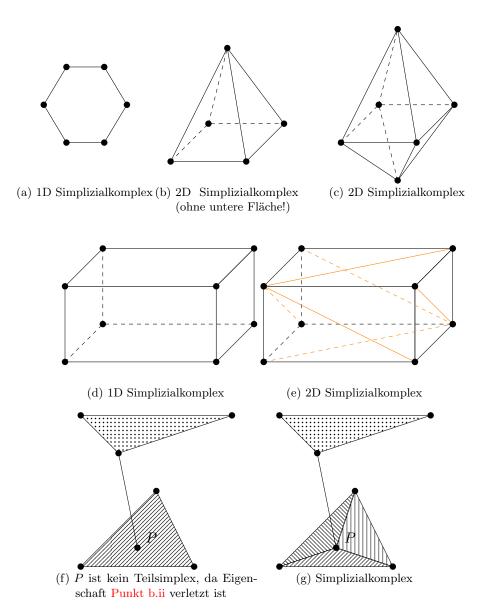


Abbildung 2.7: Beispiele für Simplizialkomplexe

Definition 37

Seien K, L Simplizialkomplexe. Eine stetige Abbildung

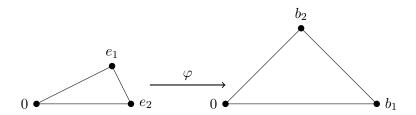
$$f:|K|\to |L|$$

heißt **simplizial**, wenn für jedes $\Delta \in K$ gilt:

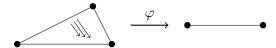
- a) $f(\Delta) \in L$
- b) $f|_{\Delta}: \Delta \to f(\Delta)$ ist eine affine Abbildung.

Beispiel 26 (Simpliziale Abbildungen)

1) $\varphi(e_1) := b_1, \ \varphi(e_2) := b_2$ φ ist eine eindeutig bestimmte lineare Abbildung



2) Folgende Abbildung $\varphi: \Delta^n \to \Delta^{n-1}$ ist simplizial:



3) Tori können simplizial auf Sphären abgebildet werden (vgl. Abbildung 2.8)

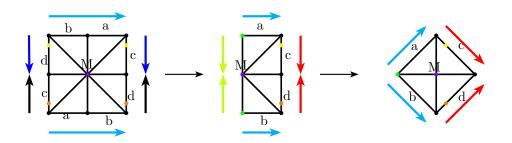


Abbildung 2.8: Abbildung eines Torus auf eine Sphäre

Definition 38

Sei K ein endlicher Simplizialkomplex. Für $n \geq 0$ sei $a_n(K)$ die Anzahl der n-Simplizes in K.

Dann heißt

$$\chi(K) := \sum_{n=0}^{\dim K} (-1)^n a_n(K)$$

Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 27

1)
$$\chi(\Delta^1) = 2 - 1 = 1$$

 $\chi(\Delta^2) = 3 - 3 + 1 = 1$
 $\chi(\Delta^3) = 4 - 6 + 4 - 1 = 1$

2)
$$\chi$$
(Oktaeder-Oberfläche) = 6 - 12 + 8 = 2
 χ (Rand des Tetraeders) = 2
 χ (Ikosaeder) = 12 - 30 + 20 = 2

3)
$$\chi(\text{Würfel}) = 8 - 12 + 6 = 2$$

 $\chi(\text{Würfel, unterteilt in Dreiecksflächen}) = 8 - (12 + 6) + (6 \cdot 2) = 2$

Bemerkung 34

$$\chi(\Delta^n) = 1$$
 für jedes $n \in \mathbb{N}_0$

Beweis: Δ^n ist die konvexe Hülle von (e_0, \dots, e_n) in \mathbb{R}^{n+1} . Jede (k+1)-elementige Teilmenge von $\{e_0, \dots, e_n\}$ definiert ein k-Simplex. $\Rightarrow a_k(\Delta^n) = \binom{n+1}{k+1}, \quad k = 0, \dots, n$

$$\Rightarrow a_k(\Delta^n) = \binom{n+1}{k+1}, \quad k = 0, \dots, n$$

$$\Rightarrow \chi(\Delta^n) = \sum_{k=0}^n (-1)^k \binom{n+1}{k+1}$$

$$f(x) = (x+1)^{n+1} \xrightarrow{\text{Binomischer}} \sum_{k=0}^{n+1} \binom{n+1}{k} x^k$$

$$\Rightarrow 0 = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k = \chi(\Delta^n) - 1$$

$$\Rightarrow \chi(\Delta^n) = 1$$

Definition 39

- a) Ein 1D-Simplizialkomplex heißt Graph.
- b) Ein Graph, der homöomorph zu S^1 ist, heißt **Kreis**.
- c) Ein zusammenhängender Graph heißt Baum, wenn er keinen Kreis enthält.

(a) Dies wird häufig auch als(b) Planare Einbettung des Te-Multigraph bezeichnet. traeders

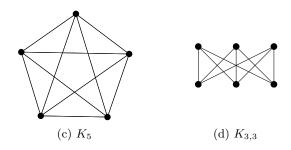


Abbildung 2.9: Beispiele für Graphen

Bemerkung 35

Für jeden Baum T gilt $\chi(T) = 1$.

Beweis: Induktion über die Anzahl der Ecken.

Bemerkung 36

- a) Jeder zusammenhängende Graph Γ enthält einen Teilbaum T,der alle Ecken von Γ enthält.²
- b) Ist $n = a_1(\Gamma) a_1(T)$, so ist $\chi(\Gamma) = 1 n$.

Beweis:

a) Siehe "Algorithmus von Kruskal".

 $^{^2}T$ wird "Spannbaum" genannt.

b)
$$\chi(\Gamma) = a_0(\Gamma) - a_1(\Gamma)$$

 $= a_0(\Gamma) - (n + a_1(T))$
 $= a_0(T) - a_1(T) - n$
 $= \chi(T) - n$
 $= 1 - n$

Bemerkung 37

Sei Δ ein *n*-Simplex und $x \in \Delta^{\circ} \subseteq \mathbb{R}^n$. Sei K der Simplizialkomplex, der aus Δ durch "Unterteilung" in x entsteht. Dann ist $\chi(K) = \chi(\Delta) = 1$.

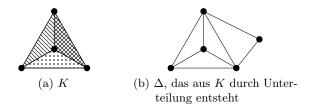


Abbildung 2.10: Beispiel für Bemerkung 37.

Beweis:
$$\chi(K) = \chi(\Delta) - \underbrace{(-1)^n}_{n\text{-Simplex}} + \sum_{k=0}^n (-1)^k \binom{n+1}{k} = \chi(\Delta)$$

Satz 2.1 (Eulersche Polyederformel)

Sei P ein konvexes Polyeder in \mathbb{R}^3 , d. h. ∂P ist ein 2-dimensionaler Simplizialkomplex, sodass gilt:

$$\forall x,y \in \partial P : [x,y] \subseteq P$$

Dann ist $\chi(\partial P) = 2$.

Beweis:

- 1) Die Aussage ist richtig für den Tetraeder.
- 2) O. B. d. A. sei $0 \in P$ und $P \subseteq \mathfrak{B}_1(0)$. Projeziere ∂P von 0 aus auf $\partial \mathfrak{B}_1(0) = S^2$. Erhalte Triangulierung von S^2 .
- 3) Sind P_1 und P_2 konvexe Polygone und T_1, T_2 die zugehörigen Triangulierungen von S^2 , so gibt es eine eine Triangulierungen T, die sowohl um T_1 als auch um T_2 Verfeinerung ist (vgl. Abbildung 2.11).

Nach Bemerkung 37 ist $\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$, weil o. B. d. A. P_2 ein Tetraeder ist.

Bemerkung 38 (Der Rand vom Rand ist 0)

Sei K ein endlicher Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf V.

Sei A_n die Menge der n-Simplizes in K, d. h.

$$A_n(K) := |\{ \sigma \in K \mid \dim(\sigma) = n \}| \quad \text{für } n = 0, \dots, d = \dim(K)$$

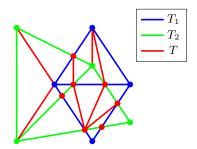


Abbildung 2.11: T ist eine Triangulierung, die für T_1 und T_2 eine Verfeinerung ist.

und $C_n(K)$ der \mathbb{R} -Vektorraum mit Basis $A_n(K)$, d. h.

$$C_n(K) = \left\{ \sum_{\sigma \in A_n(K)} c_{\sigma} \cdot \sigma \mid c_{\sigma} \in \mathbb{R} \right\}$$

Sei $\sigma = \Delta(x_0, \dots, x_n) \in A_n(K)$, sodass $x_0 < x_1 < \dots < x_n$.

Für $i=0,\ldots,n$ sei $\partial_i\sigma:=\Delta(x_0,\ldots,\hat{x_i},\ldots,x_n)$ die i-te Seite von σ und $d_\sigma=d_n\sigma:=\sum_{i=0}(-1)^i\partial_i\sigma\in C_{n-1}(K)$ und $d_n:C_n(K)\to C_{n-1}(K)$ die dadurch definierte lineare Abbildung.

Dann gilt: $d_{n-1} \circ d_n = 0$

Abbildung 2.12: Simplizialkomplex mit Totalordnung

Beispiel 28

Sei a < b < c. Dann gilt:

$$d_2\sigma = e_1 - e_2 + e_3$$

$$d_1(e_1 - e_2 + e_3) = (c - b) - (c - a) + (b - a)$$

= 0

Sei a < b < c < d. Dann gilt für Tetraeder:

$$\begin{aligned} d_3(\Delta(a,b,c,d)) &= \Delta(b,c,d) - \Delta(a,c,d) + \Delta(a,b,d) - \Delta(a,b,c), \text{wobei:} \\ d_2(\quad \Delta(b,c,d)) &= \quad \Delta(c,d) - \Delta(b,d) + \Delta(b,c) \\ d_2(-\Delta(a,c,d)) &= -\Delta(c,d) + \Delta(a,d) - \Delta(a,c) \\ d_2(\quad \Delta(a,b,d)) &= \quad \Delta(b,d) - \Delta(a,d) + \Delta(a,b) \\ d_2(-\Delta(a,b,c)) &= -\Delta(b,c) + \Delta(a,c) - \Delta(a,b) \\ \Rightarrow d_2(d_3(\Delta(a,b,c,d))) &= 0 \end{aligned}$$

Beweis: Sei $\sigma \in A_n$. Dann gilt:

$$d_{n-1}(d_n\sigma) = d_{n-1}\left(\sum_{i=0}^n (-1)^i \partial_i \sigma\right)$$

$$= \sum_{i=0}^n (-1)^i d_{n-1}(\partial_i \sigma)$$

$$= \sum_{i=0}^n (-1)^i \sum_{j=0}^{n-1} \partial_i (\partial_j \sigma) (-1)^j$$

$$= \sum_{0 \le i \le j \le n-1} (-1)^{i+j} \partial_j (\partial_i (\sigma)) + \sum_{0 \le j < i \le n} (-1)^{i+j} \partial_{i-1}(\partial_j \sigma)$$

$$= 0$$

weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit umgekehrten Vorzeichen.

Definition 40

Sei K ein Simplizialkomplex, $Z_n := \text{Kern}(d_n) \subseteq C_n$ und $B_n := \text{Bild}(d_{n+1}) \subseteq C_n$.

- a) $H_n = H_n(K, \mathbb{R}) := Z_n/B_n$ heißt n-te **Homologiegruppe** von K.
- b) $b_n(K) := \dim_{\mathbb{R}} H_n$ heißt *n*-te **Betti-Zahl** von K.

Bemerkung 39

Nach Bemerkung 38 ist $B_n \subseteq Z_n$, denn $d_{n+1}(C) \in \text{Kern}(d_n)$ für $C \in C_{n+1}$.

Satz 2.2

Für jeden endlichen Simplizialkomplex K der Dimension d gilt:

$$\sum_{k=0}^{d} (-1)^k b_k(K) = \sum_{k=0}^{d} (-1)^k a_k(K) = \chi(K)$$

Bemerkung 40

Es gilt <u>nicht</u> $a_k = b_k \ \forall k \in \mathbb{N}_0$.

Beweis:

- Dimensionsformel für d_n : $a_n = \dim Z_n + \dim B_{n-1}$ für $n \ge 1$
- Dimensionsformel für $Z_n \to H_n = Z_n/B_n$: dim $Z_n = b_n + \dim B_n$
- $\dim Z_d = b_d$, da $\dim Z_d = b_d + \dim B_d$, wobei $\dim B_d = 0$, da $a_{d+1} = 0$
- $a_0 \dim B_0 = b_0$, da $a_0 \dim B_0 = a_0 \dim Z_0 + b_0$ und $a_0 = \dim Z_0$, weil a 1 = 0

$$\Rightarrow \sum_{k=0}^{d} (-1)^k a_k = a_0 + \sum_{k=1}^{d} (-1)^k (\dim Z_k + \dim B_{k-1})$$

$$= a_0 + \sum_{k=1}^{d} (-1)^k \dim Z_k + \sum_{k=0}^{d-1} (-1)^{k+1} \dim B_k$$

$$= a_0 + \sum_{k=1}^{d} (-1)^k \dim Z_k - \sum_{k=0}^{d-1} (-1)^k \dim B_k$$

$$= a_0 + \sum_{k=1}^{d-1} (-1)^k b_k + (-1)^d \underbrace{\dim Z_d}_{=b_d} - \dim B_0$$

$$= b_0 + \sum_{k=1}^{d-1} (-1)^k b_k + (-1)^d b_d$$

$$= \sum_{k=0}^{d} (-1)^k b_k$$

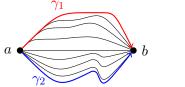
Übungsaufgaben

Aufgabe 6 (Zusammenhang)

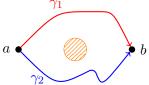
- (a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhängend ist, wenn sie zusammenhängend ist
- (b) Betrachten Sie nun wie in Beispiel 20.8 den Raum $X := (\mathbb{R} \setminus \{ \ 0 \ \}) \cup \{ \ 0_1, 0_2 \ \}$ versehen mit der dort definierten Topologie. Ist X wegzusammenhängend?

3 Fundamentalgruppe und Überlagerungen

3.1 Homotopie von Wegen



(a) γ_1 und γ_2 sind homotop, (b) γ_1 und γ_2 sind wegen dem da man sie "zueinander verschieben" kann.



Hindernis nicht homotop.

Abbildung 3.1: Beispiele für Wege γ_1 und γ_2

Definition 41

Sei X ein topologischer Raum, $a, b \in X$, $\gamma_1, \gamma_2 : I \to X$ Wege von a nach b, d. h. $\gamma_1(0) =$ $\gamma_2(0) = a, \ \gamma_1(1) = \gamma_2(1) = b$

 γ_1 und γ_2 heißen **homotop**, wenn es eine stetige Abbildung $H:I\times I\to X$ mit

$$H(t,0) = \gamma_1(t) \ \forall t \in I$$

$$H(t,1) = \gamma_2(t) \ \forall t \in I$$

und H(0,s)=a und H(1,s)=b für alle $s\in I$ gibt. Dann schreibt man: $\gamma_1\sim\gamma_2$

H heißt **Homotopie** zwischen γ_1 und γ_2 .

Bemerkung 41

Sei X ein topologischer Raum, $a,b\in X,\ \gamma_1,\gamma_2:I\to X$ Wege von a nach b und H eine Homotopie ziwschen γ_1 und γ_2 .

Dann gilt: Der Weg

$$\gamma_s: I \to X, \quad \gamma_s(t) = H(t, s)$$

ist Weg in X von a nach b für jedes $s \in I$.

Beweis: H ist stetig, also ist H(t,s) insbesondere für jedes feste s stetig. Da H(0,s)=a und H(1,s)=b für alle $s\in I$ und γ_s eine Abbildung von I auf X ist, ist γ_s ein Weg in X von anach b für jedes $s \in I$.

Bemerkung 42

Durch Homotopie wird eine Äquivalenzrelation auf der Menge aller Wege in X von a nach b

Beweis:

- reflexiv: $H(t,s) = \gamma(t)$ für alle $(t,s) \in I \times I$
- symmetrisch: H'(t,s) = H(t,1-s) für alle $(t,s) \in I \times I$
- transitiv: Seien H' bzw. H'' Homotopien von γ_1 nach γ_2 bzw. von γ_2 nach γ_3 .

Dann sei
$$H(t,s):= egin{cases} H'(t,2s) & \text{falls } 0 \leq s \leq \frac{1}{2} \\ H''(t,2s-1) & \text{falls } \frac{1}{2} \leq s \leq 1 \end{cases}$$

 $\Rightarrow H$ ist stetig und Homotopie von γ_1 nach γ_3 .

Beispiel 29

- 1) Sei $X = S^1$. γ_1 und γ_2 aus Abbildung 3.3a nicht homotop.
- 2) Sei $X = T^2$. γ_1, γ_2 und γ_3 aus Abbildung 3.3b sind paarweise nicht homotop.
- 3) Sei $X = \mathbb{R}^2$ und a = b = (0, 0).

Je zwei Wege im \mathbb{R}^2 mit Anfangs- und Endpunkt (0,0) sind homotop.

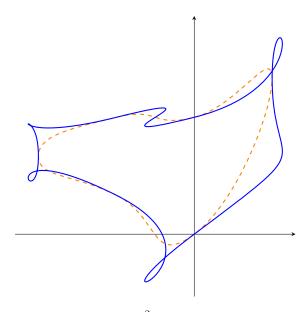


Abbildung 3.2: Zwei Wege im \mathbb{R}^2 mit Anfangs- und Endpunkt (0,0)

Sei $\gamma_0: I \to \mathbb{R}^2$ der konstante Weg $\gamma_0(t) = (0,0) \ \forall t \in I$. Sei $\gamma(0) = \gamma(1) = (0,0)$.

 $H(t,s) := (1-s)\gamma(t)$ ist stetig, $H(t,0) = \gamma(t) \ \forall t \in I \text{ und } H(t,1) = (0,0) \ \forall t \in I.$

Bemerkung 43

Sei X ein topologischer Raum, $\gamma: I \to X$ ein Weg und $\varphi: I \to I$ stetig mit $\varphi(0) = 0$, $\varphi(1) = 1$. Dann sind γ und $\gamma \circ \varphi$ homotop.

Beweis: Sei $H(t,s) = \gamma((1-s)t + s \cdot \varphi(t))$.

Dann ist H stetig, $H(t,0)=\gamma(t)$, $H(t,1)=\gamma(\varphi(t))$, $H(0,s)=\gamma(0)$ und $H(1,s)=\gamma(1-s+s)=\gamma(1)$ $\Rightarrow H$ ist Homotopie.

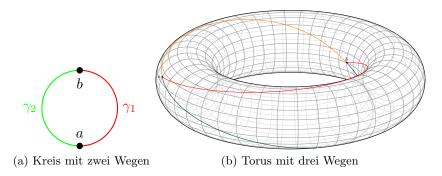


Abbildung 3.3: Beispiele für (nicht)-Homotopie von Wegen

Definition 42

Seien γ_1, γ_2 Wege in X mit $\gamma_1(1) = \gamma_2(0)$. Dann ist

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{falls } 0 \le t < \frac{1}{2} \\ \gamma_2(2t-1) & \text{falls } \frac{1}{2} \le t \le 1 \end{cases}$$

ein Weg in X. Er heißt zusammengesetzter Weg und man schreibt $\gamma = \gamma_1 * \gamma_2$.

Bemerkung 44

Das Zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:

$$\gamma_1 * (\gamma_2 * \gamma_3) \neq (\gamma_1 * \gamma_2) * \gamma_3$$
$$\gamma_1 * (\gamma_2 * \gamma_3) \sim (\gamma_1 * \gamma_2) * \gamma_3$$

mit
$$\gamma_1(1) = \gamma_2(0)$$
 und $\gamma_2(1) = \gamma_3(0)$.

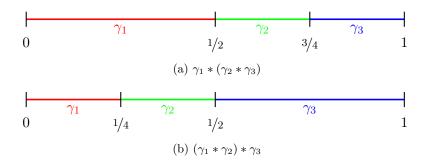


Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Bemerkung 43 bis auf Homotopie assoziativ. Verwende dazu

$$\varphi(t) = \begin{cases} \frac{1}{2}t & \text{falls } 0 \le t < \frac{1}{2} \\ t - \frac{1}{4} & \text{falls } \frac{1}{2} \le t < \frac{3}{4} \\ 2t - 1 & \text{falls } \frac{3}{4} \le t \le 1 \end{cases}$$

Bemerkung 45

Sei X ein topologischer Raum, $a,b,c\in X,\,\gamma_1,\gamma_1'$ Wege von a nach b und γ_2,γ_2' Wege von b nach c.

Sind
$$\gamma_1 \sim \gamma_1'$$
 und $\gamma_2 \sim \gamma_2'$, so ist $\gamma_1 * \gamma_2 \sim \gamma_1' * \gamma_2'$.

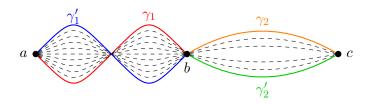


Abbildung 3.5: Situation aus Bemerkung 45

Beweis: Sei H_i eine Homotopie zwischen γ_i und γ'_i , i = 1, 2.

Dann ist

$$H(t,s) := \begin{cases} H_1(2t,s) & \text{falls } 0 \le t \le \frac{1}{2} \quad \forall s \in I \\ H_2(2t-1,s) & \text{falls } \frac{1}{2} \le t \le 1 \end{cases}$$

eine Homotopie zwischen $\gamma_1 * \gamma_2$ und $\gamma_1' * \gamma_2'$.

Eine spezielle Homotopieäquivalenz sind sog. Deformationsretraktionen:

Definition 43

Sei X ein topologischer Raum, $A \subseteq X$, $r: X \to A$ eine stetige Abbildung und $\iota = (\mathrm{id}_X)|_A$.

- a) $\iota: A \to X$ mit $\iota(x) = x$ heißt die **Inklusionsabbildung** und man schreibt: $\iota: A \hookrightarrow X$.
- b) r heißt **Retraktion**, wenn $r|_A = id_A$ ist.
- c) A heißt **Deformationsretrakt**, wenn es eine Retraktion r auf A mit $\iota \circ r \sim \mathrm{id}_X$ gibt.

Beispiel 30 (Zylinder auf Kreis)

Sei $X = S^1 \times \mathbb{R}$ ein topologischer Raum und

$$r: S^1 \times \mathbb{R} \to S^1 \times \{0\} \cong S^1$$

 mit

$$r(x, y) := (x, 0)$$

eine Abbildung. r ist eine Retraktion, da $r|_{S^1} \cong \mathrm{id}_{S_1}$.

$$\iota \circ r : S^1 \times \mathbb{R} \to S^1 \times \mathbb{R}$$
$$(x,y) \mapsto (x,0)$$
$$H : (S^1 \times \mathbb{R}) \times I \to S^1 \times \mathbb{R}$$
$$(x,y,t) \mapsto (x,ty)$$

3.2 Fundamentalgruppe

Für einen Weg γ sei $[\gamma]$ seine **Homotopieklasse**.

Definition 44

Sei X ein topologischer Raum und $x \in X$. Sei außerdem

$$\pi_1(X,x) := \{ [\gamma] \mid \gamma \text{ ist Weg in } X \text{ mit } \gamma(0) = \gamma(1) = x \}$$

Durch $[\gamma_1] *_G [\gamma_2] := [\gamma_1 * \gamma_2]$ wird $\pi_1(X, x)$ zu einer Gruppe. Diese Gruppe heißt **Fundamentalgruppe** von X im Basispunkt x.

Bemerkung 46

Im \mathbb{R}^2 gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)

- a) Abgeschlossenheit folgt direkt aus der Definition von $*_G$
- b) Assoziativität folgt aus Bemerkung 44
- c) Neutrales Element $e = [\gamma_0], \gamma_0(t) = x \quad \forall t \in I. \ e * [\gamma] = [\gamma] = [\gamma] * e, \text{ da } \gamma_0 * \gamma \sim \gamma$
- d) Inverses Element $[\gamma]^{-1} = [\overline{\gamma}] = [\gamma(1-t)]$, denn $\overline{\gamma} * \gamma \sim \gamma_0 \sim \gamma * \overline{\gamma}$

Beispiel 31

1) $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \} = \{ (\cos \varphi, \sin \varphi) \in \mathbb{R}^2 \mid 0 \le \varphi \le 2\pi \}$ $\pi_1(S^1, 1) = \{ [\gamma^k] \mid k \in \mathbb{Z} \} \cong \mathbb{Z}. \text{ Dabei ist } \gamma(t) = e^{2\pi i t} = \cos(2\pi t) + i \sin(2\pi t) \text{ und } \gamma^k := \underbrace{\gamma * \cdots * \gamma}_{k \text{ mal}}$

 $[\gamma^k] \mapsto k$ ist ein Isomorphismus.

- 2) $\pi_1(\mathbb{R}^2,0) = \pi_1(\mathbb{R}^2,x) = \{e \}$ für jedes $x \in \mathbb{R}^2$
- 3) $\pi_1(\mathbb{R}^n, x) = \{e \} \text{ für jedes } x \in \mathbb{R}^n$
- 4) $G \subseteq \mathbb{R}^n$ heißt **sternförmig** bzgl. $x \in G$, wenn für jedes $y \in G$ auch die Strecke $[x,y] \subseteq G$ ist.

Für jedes sternförmige $G \subseteq \mathbb{R}^n$ ist $\pi_1(G, x) = \{e\}$

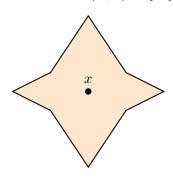


Abbildung 3.6: Sternförmiges Gebiet

5) $\pi_1(S^2, x_0) = \{e\}$, da im \mathbb{R}^2 alle Wege homotop zu $\{e\}$ sind. Mithilfe der stereographischen Projektion kann von S^2 auf den \mathbb{R}^2 abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flächenfüllenden Wegen, d. h. wenn $\gamma:I\to S^2$ surjektiv ist.

Bemerkung 47

Sei X ein topologischer Raum, $a, b \in X$, $\delta: I \to X$ ein Weg von a nach b.

Dann ist die Abbildung

$$\alpha: \pi_1(X, a) \to \pi_1(X, b) \quad [\gamma] \mapsto [\overline{\delta} * \gamma * \delta]$$

ein Gruppenisomorphismus.

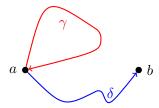


Abbildung 3.7: Situation aus Bemerkung 47

Beweis:

$$\alpha([\gamma_1] * [\gamma_2]) = [\overline{\delta} * (\gamma_1 * \gamma_2) * \delta]$$

$$= [\overline{\delta} * \gamma_1 * \delta * \overline{\delta} * \gamma_2 * \delta]$$

$$= [\overline{\delta} * \gamma_1 * \delta] * [\overline{\delta} * \gamma_2 * \delta]$$

$$= \alpha([\gamma_1]) * \alpha([\gamma_2])$$

Definition 45

Ein wegzusammenhängender topologischer Raum X heißt einfach zusammenhängend, wenn $\pi_1(X,x) = \{e\}$ für ein $x \in X$.

Wenn $\pi_1(X, x) = \{e \}$ für ein $x \in X$ gilt, dann wegen Bemerkung 47 sogar für alle $x \in X$.

Bemerkung 48

Es seien X, Y topologische Räume, $f: X \to Y$ eine stetige Abbildung, $x \in X, y := f(x) \in Y$.

- a) Dann ist die Abbildung $f_*: \pi_1(X,x) \to \pi_1(Y,y), [\gamma] \to [f \circ \gamma]$ ein Gruppenhomomorphismus.
- b) Ist Z ein weiterer topologischer Raum und $g: Y \to Z$ eine stetige Abbildung z:=g(y). Dann ist $(g \circ f)_* = g_* \circ f_*: \pi_1(X, x) \to \pi_1(Z, z)$

Beweis:

a) f_* ist wohldefiniert: Seien γ_1, γ_2 homotope Wege von x. z.Z.: $f \circ \gamma_1 \sim f \circ \gamma_2$: Nach Voraussetzung gibt es stetige Abbildungen $H: I \times I \to X$ mit

$$H(t,0) = \gamma_1(t),$$

 $H(t,1) = \gamma_2(t),$
 $H(0,s) = H(1,s) = x.$

Dann ist $f \circ H : I \times I \to Y$ stetig mit $(f \circ H)(t, 0) = f(H(t, 0)) = f(\gamma_1(t)) = (f \circ \gamma_1)(t)$ etc. $\Rightarrow f \circ \gamma_1 \sim f \circ \gamma_2$.

$$f_*([\gamma_1]*[\gamma_2]) = [f \circ (\gamma_1 * \gamma_2)] = [(f \circ \gamma_1)] * [(f \circ \gamma_2)] = f_*([\gamma_1]) * f_*([\gamma_2])$$

b)
$$(g \circ f)_*([\gamma]) = [(g \circ f) \circ \gamma] = [g \circ (f \circ \gamma)] = g_*([f \circ \gamma]) = g_*(f_*([\gamma])) = (g_* \circ f_*)([\gamma])$$

Beispiel 32

- 1) $f: S^1 \hookrightarrow \mathbb{R}^2$ ist injektiv, aber $f_*: \pi_1(S^1, 1) \cong \mathbb{Z} \to \pi_1(\mathbb{R}^2, 1) = \{e\}$ ist nicht injektiv.
- 2) $f: \mathbb{R} \to S^1, t \mapsto (\cos 2\pi t, \sin 2\pi t)$ ist surjektiv, aber $f_*: \pi_1(\mathbb{R}, 0) = \{e\} \to \pi_1(S^1, 1) \cong \mathbb{Z}$ ist nicht surjektiv.

Bemerkung 49

Sei $f: X \to Y$ ein Homö
omorphismus zwischen topologischen Räumen X, Y. Dann gilt:

$$f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$$

ist ein Isomorphismus für jedes $x \in X$.

Beweis: Sei $g: Y \to X$ die Umkehrabbildung, d. h. g ist stetig und $f \circ g = \mathrm{id}_Y$, $g \circ f = \mathrm{id}_X$ $\Rightarrow f_* \circ g_* = (f \circ g)_* = (\mathrm{id}_Y)_* = \mathrm{id}_{\pi_1(Y, f(X))}$ und $g_* \circ f_* = \mathrm{id}_{\pi_1(X, x)}$.

Definition 46

Seien X, Y topologische Räume, $x_0 \in X, y_0 \in Y, f, g : X \to Y$ stetig mit $f(x_0) = y_0 = g(x_0)$. f und g heißen **homotop** $(f \sim g)$, wenn es eine stetige Abbildung $H : X \times I \to Y$ mit

$$H(x,0) = f(x) \ \forall x \in X$$
$$H(x,1) = g(x) \ \forall x \in X$$
$$H(x_0,s) = y_0 \ \forall s \in I$$

gibt.

Bemerkung 50

Sind f und g homotop, so ist $f_* = g_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$.

Beweis: Sei γ ein geschlossener Weg in X um x_0 , d. h. $[\gamma] \in \pi_1(X, x_0)$.

Z. z.:
$$f \circ \gamma \sim g \circ \gamma$$

Sei dazu $H_{\gamma}: I \times I \to Y, (t,s) \mapsto H(\gamma(t),s)$. Dann gilt:

$$H_{\gamma}(t,0) = H(\gamma(t),0) = (f \circ \gamma)(t) \ \forall t \in I$$

 $H_{\gamma}(1,s) = H(\gamma(1),s) = H(x_0,s) = y_0 \ \forall s \in I$
 $H_{\gamma}(t,1) = H(\gamma(t),1) = g(\gamma(t)) \ \forall t \in I$

Beispiel 33

 $f: X \to Y, g: Y \to X$ mit $g \circ f \sim \mathrm{id}_X$, $f \circ g \sim \mathrm{id}_Y$ $\Rightarrow f_*$ ist Isomorphismus. Konkret: $f: \mathbb{R}^2 \to \{0\}$, $g: \{0\} \to \mathbb{R}^2$ $\Rightarrow f \circ g = \mathrm{id}_{\{0\}}$, $g \circ f: \mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto 0$ für alle x. $g \circ f \sim \mathrm{id}_{\mathbb{R}^2}$ mit Homotopie: $H: \mathbb{R}^2 \times I \to \mathbb{R}^2$, H(x, s) = (1 - s)x (stetig!)

Satz 3.1 (Satz von Seifert und van Kampen "light")

 $\Rightarrow H(x,0) = x = \mathrm{id}_{\mathbb{R}^2}(x), H(x,1) = 0, H(0,s) = 0 \ \forall s \in I.$

Sei X ein topologischer Raum, $U, V \subseteq X$ offen mit $U \cup V = X$ und $U \cap V$ wegzusammenhängend.

Dann wird $\pi_1(X, x)$ für $x \in U \cap V$ erzeugt von geschlossenen Wegen um x, die ganz in U oder ganz in V verlaufen.

Beweis: Sei $\gamma: I \to X$ ein geschlossener Weg um x. Überdecke I mit endlich vielen offenen Intervallen I_1, I_2, \ldots, I_n , die ganz in $\gamma^{-1}(U)$ oder ganz in $\gamma^{-1}(V)$ liegen.

O. B. d. A. sei $\gamma(I_1) \subseteq U, \gamma(I_2) \subseteq V$, etc.

Wähle $t_i \in I_i \cap I_{i+1}$, also $\gamma(t_i) \in U \cap V$. Sei σ_i Weg in $U \cap V$ von x_0 nach $\gamma(t_i) \Rightarrow \gamma$ ist homotop zu

$$\underbrace{\gamma_1 * \overline{\sigma_1}}_{\text{in } U} * \underbrace{\sigma_1 * \gamma_2 * \overline{\sigma_2}}_{\text{in } V} * \cdots * \sigma_{n-1} * \gamma_2$$

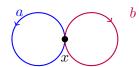


Abbildung 3.8: Topologischer Raum X

Beispiel 34 (Satz von Seifert und van Kampen)

- 1) Sei X wie in Abbildung 3.8. $\pi_1(X, x)$ wird "frei" erzeugt von a und b, weil $\pi_1(U, x) = \langle a \rangle \cong \mathbb{Z}, \pi_1(V, x) = \langle b \rangle \cong \mathbb{Z}$, insbesondere ist a * b nicht homotop zu b * a.
- 2) Torus: $\pi_1(T^2, X)$ wird erzeugt von a und b.

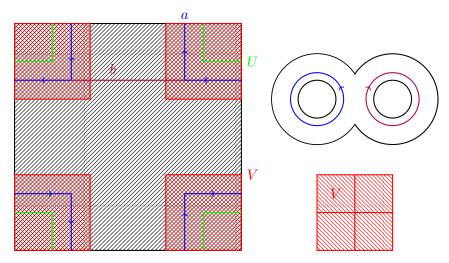


Abbildung 3.9: $a*b=b*a \Leftrightarrow a*b*\overline{a}*\overline{b}\sim e$

3.3 Überlagerungen

Definition 47

Es seien X,Y zusammenhängende topologische Räume und $p:Y\to X$ eine stetige Abbildung.

p heißt **Überlagerung**, wenn jedes $x \in X$ eine offene Umgebung $U = U(x) \subseteq X$ besitzt, sodass $p^{-1}(U)$ disjunkte Vereinigung von offenen Teilmengen $V_j \subseteq Y$ ist $(j \in I)$ und $p|_{V_j}: V_j \to U$ ein Homöomorphismus ist.

Beispiel 35

1) siehe Abbildung 3.10

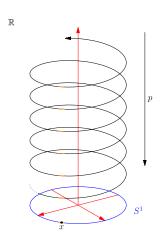


Abbildung 3.10: $\mathbb{R} \to S^1$, $t \mapsto (\cos 2\pi t, \sin 2\pi t)$

- 2) siehe Abbildung 3.11
- 3) $\mathbb{R}^n \to T^n = \mathbb{R}^n/\mathbb{Z}^n$
- 4) $S^n \to \mathcal{P}^n(\mathbb{R})$
- 5) $S^1 \to S^1$, $z \mapsto z^2$, siehe Abbildung 3.12

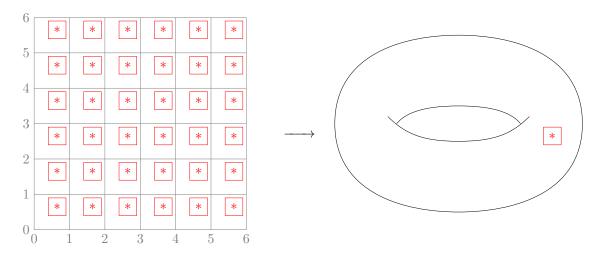


Abbildung 3.11: $\mathbb{R}^2 \to T^2 = \mathbb{R}^2/\mathbb{Z}^2$

Bemerkung 51

Überlagerungen sind surjektiv.

Beweis: Sei $p: Y \to X$ eine Überlagerung und $x \in X$ beliebig. Dann existiert eine offene Umgebung $U(x) \subseteq X$ und offene Teilmengen $V_j \subseteq X$ mit $p^{-1}(U) = \bigcup V_j$ und $p|_{V_j}: V_j \to U$ ist Homöomorphismus.

D. h. es existiert ein $y \in V_j$, so dass $p|_{V_j}(y) = x$. Da $x \in X$ beliebig war und ein $y \in Y$ existiert, mit p(y) = x, ist p surjektiv.

Definition 48

Seien $(X, \mathfrak{T}_X), (Y, \mathfrak{T}_Y)$ topologische Räume und $f: X \to Y$ eine Abbildung.

$$f$$
 heißt **offen** : $\Leftrightarrow \forall U \in \mathfrak{T}_X : f(U) \in \mathfrak{T}_Y$.

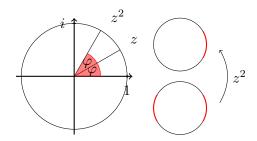


Abbildung 3.12: $t \mapsto (\cos 4\pi t, \sin 4\pi t)$

Beispiel 36 (Offene und stetige Abbildungen)

Sei X ein topologischer Raum und seien $f_i : \mathbb{R} \to \mathbb{R}$ mit $i \in \{1, 2, 3\}$ und $g : \mathbb{R} \to S^1 = \{z \in \mathbb{C} \mid ||z|| = 1\}$ Abbildungen.

- 1) $f_1 := id_{\mathbb{R}}$ ist eine offene und stetige Abbildung.
- 2) $g(x) := e^{2\pi i x}$ ist eine offene, aber keine stetige Abbildung (vgl. Abbildung 1.5).
- 3) $f_2(x) := 42$ ist eine stetige, aber keine offene Abbildung.
- 4) $f_3(x) := \begin{cases} 0 & \text{falls } x \in \mathbb{Q} \\ 42 & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ ist weder stetig noch offen.

Bemerkung 52

Überlagerungen sind offene Abbildungen.

Beweis: Sei $y \in V$ und $x \in p(V)$, sodass x = p(y) gilt. Sei weiter $U = U_x$ eine offene Umgebung von x wie in Definition 47 und V_i die Komponente von $p^{-1}(U)$, die y enthält.

Dann ist $V \cap V_j$ offene Umgebung von y.

 $\Rightarrow p(V \cap V_j)$ ist offen in $p(V_j)$, also auch offen in X. Außerdem ist $p(y) = x \in p(V \cap V_j)$ und $p(V \cap V_j) \subseteq p(V)$.

 $\Rightarrow p(V)$ ist offen.

Definition 49

Sei X ein topologischer Raum und $M \subseteq X$.

M heißt **diskret** in X, wenn M in X keinen Häufungspunkt hat.

Bemerkung 53

Sei $p: Y \to X$ Überlagerung, $x \in X$.

- a) X hausdorffsch \Rightarrow Y hausdorffsch
- b) $p^{-1}(x)$ ist diskret in Y für jedes $x \in X$.

Beweis:

a) Seien $y_1, y_2 \in Y$.

1. Fall:
$$p(y_1) = p(y_2) = x$$
.

Sei U Umgebung von x wie in Definition 47, V_{j_1} bzw. V_{j_2} die Komponente von $p^{-1}(U)$, die y_1 bzw. y_2 enthält.

Dann ist $V_{j_1} \neq V_{j_2}$, weil beide ein Element aus $p^{-1}(x)$ enthalten.

 $\Rightarrow V_{j_1} \cap V_{j_2} = \emptyset$ nach Voraussetzung.

<u>2. Fall</u>: $p(y_1) \neq p(y_2)$.

Dann seien U_1 und U_2 disjunkte Umgebungen von $p(y_1)$ und $p(y_2)$.

 $\Rightarrow p^{-1}(U_1)$ und $p^{-1}(U_2)$ sind disjunkte Umgebungen von y_1 und y_2 .

b) Sei $x \in X$ beliebig, aber fest.

Zu zeigen: $\forall y_i \in p^{-1}(x) : \exists V_i \in \mathfrak{T}_Y \text{ mit } y_i \in V_i, \text{ sodass gilt:} i \neq j \Rightarrow V_i \cap V_j = \emptyset.$

Die V_i existieren wegen der Definition einer Überlagerung: p heißt Überlagerung: $\Leftrightarrow \forall x \in X \exists U = U(x) \in \mathfrak{T}_X : p^{-1}(U) = \dot{\bigcup}_{V_i \in \mathfrak{T}_Y} V_i$ und $p|_{V_i}$ ist Homöomorphismus. $\Rightarrow (p|_{V_i})^{-1}(x) = \{y_i\}$

 \Rightarrow Alle y_i liegen diskret in Y, da Häufungspunkte unendlich viele Elemente in jeder Umgebung benötigen.

Bemerkung 54

Sei $p: Y \to X$ Überlagerung, $x_1, x_2 \in X$.

Dann ist $|p^{-1}(x_1)| = |p^{-1}(x_2)|$.

Beweis: Sei U Umgebung von x_1 wie in Definition 47, $x \in U$. Dann enthält jedes $V_j, j \in I_X$ genau ein Element von $p^{-1}(x)$

 $\Rightarrow |p^{-1}(x)|$ ist konstant auf U

 $\xrightarrow{X \text{zhgd.}} |p^{-1}(x)|$ ist konstant auf X

Definition 50

Es seien X, Y, Z topologische Räume, $p: Y \to X$ eine Überlagerung und $f: Z \to X$ stetig. Eine stetige Abbildung $\tilde{f}: Z \to Y$ heißt **Liftung** von f, wenn $p \circ \tilde{f} = f$ ist.

Bemerkung 55 (Eindeutigkeit der Liftung)

Sei Z zusammenhängend und $f_0, f_1: Z \to Y$ Liftungen von f.

$$\exists z_0 \in Z : f_0(z_0) = f_1(z_0) \Rightarrow f_0 = f_1$$

Beweis: Sei $T = \{ z \in Z \mid f_0(z) = f_1(z) \}.$

Z. z.: T ist offen und $Z \setminus T$ ist auch offen.

Sei $z \in T, x = f(z), U$ Umgebung von x wie in Definition 47, V die Komponente von $p^{-1}(U)$, die $y := f_0(z) = f_1(z)$ enthält.

Sei $q:U\to V$ die Umkehrabbildung zu $p|_V$.

Sei $W:=f^{-1}(U)\cap f_0^{-1}(V)\cap f_1^{-1}(V).$ W ist offene Umgebung in Z von z.

Behauptung: $W \subseteq T$

Denn für $w \in W$ ist $q(f(w)) = q((p \circ f_0))(w) = ((q \circ p) \circ f_0)(w) = f_0(w) = q(f(w)) = f_1(w)$ $\Rightarrow T$ ist offen.

Analog: $Z \setminus T$ ist offen.

 $[|]p^{-1}(x_1)| = \infty$ ist erlaubt!

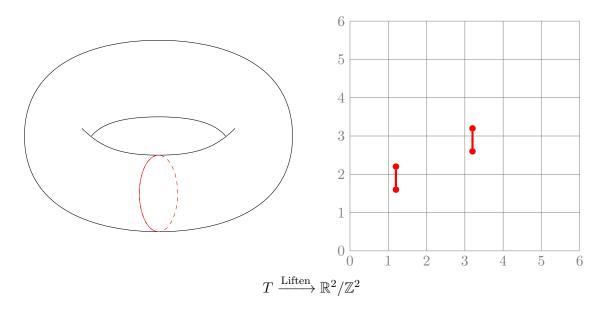


Abbildung 3.13: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht geschlossen

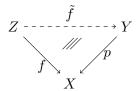


Abbildung 3.14: Situation aus Bemerkung 55

Satz 3.2

Sei $p: Y \to X$ Überlagerung, $\gamma: I \to X$ ein Weg, $y \in Y$ mit $p(y) = \gamma(0) =: x$.

Dann gibt es genau einen Weg $\tilde{\gamma}: I \to Y$ mit $\tilde{\gamma}(0) = y$ und $p \circ \tilde{\gamma} = \gamma$.

 $p:Y\to X$ Überlagerung, X,Y wegzusammenhängend. p stetig und surjektiv, zu $x\in X\exists$ Umgebung U, so dass $p^{-1}(U)=\bigcup V_i$

 $p|_{V_i}:V_j\to U$ Homöomorphismus.

Bemerkung 56

Wege in X lassen sich zu Wegen in Y liften.

Zu jedem $y \in p^{-1}(\gamma(0))$ gibt es genau einen Lift von γ .

Proposition 3.3

Seien $p: Y \to X$ eine Überlagerung, $a, b \in X$, $\gamma_0, \gamma_1: I \to X$ homotope Wege von a nach $b, \tilde{a} \in p^{-1}(a), \tilde{\gamma_0}, \tilde{\gamma_1}$ Liftungen von γ_0 bzw. γ_1 mit $\tilde{\gamma_i}(0) = \tilde{a}$.

Dann ist $\tilde{\gamma_0}(1) = \tilde{\gamma_1}(1)$ und $\tilde{\gamma_0} \sim \tilde{\gamma_1}$.

Beweis: Sei $H: I \times I \to X$ Homotopie zwischen γ_1 und γ_2 .

Für $s \in I$ sei $\gamma_s : I \to X, t \mapsto H(t, s)$.

Sei $\tilde{\gamma}_s$ Lift von γ_s mit $\tilde{\gamma}_s(0) = \tilde{a}$

Sei $\tilde{H}: I \times I \to Y$, $\tilde{H}(t,s) := (\tilde{\gamma}_s(t), s)$

Dann gilt:

- (i) \tilde{H} ist stetig (Beweis wie für Bemerkung 55)
- (ii) $\tilde{H}(t,0) = \tilde{\gamma}_0(t), \quad \tilde{H}(t,1) = \tilde{\gamma}_1(t)$
- (iii) $\tilde{H}(0,s) = \tilde{\gamma}_s(0) = \tilde{a}$
- (iv) $\tilde{H}(1,s) \in p^{-1}(b)$

Da $p^{-1}(b)$ diskrete Teilmenge von Y ist

$$\Rightarrow \tilde{b_s} = \tilde{H}(1,s) = \tilde{H}(1,0) \ \forall s \in I$$

 $\Rightarrow \tilde{b_0} = \tilde{b_1}$ und \tilde{H} ist Homotopie zwischen $\tilde{\gamma_0}$ und $\tilde{\gamma_1}$.

Folgerung 3.4

Sei $p: Y \to X$ eine Überlagerung, $x_0 \in X, y_0 \in p^{-1}(x_0)$

- a) $p_1: \pi_1(Y, y_0) \to \pi_1(X, x_0)$ ist injektiv
- b) $[\pi_1(X, x_0) : p_*(\pi_1(Y, y_0))] = \deg(p)$

Beweis:

a) Sei $\tilde{\gamma}$ ein Weg in Y um y_0 und $p_*([\tilde{\gamma}]) = e$, also $p \circ \tilde{\gamma} \sim \gamma_{x_0}$

Nach Proposition 3.3 ist dann $\tilde{\gamma}$ homotop zum Lift des konstanten Wegs γ_{x_0} mit Anfangspunkt y_0 , also zu $\gamma_{y_0} \Rightarrow [\tilde{\gamma}] = e$

b) Sei $d = \deg p, p^{-1}(x_0) = \{y_0, y_1, \dots, y_{d-1}\}$. Für einen geschlossenen Weg γ in X um x_0 sei $\tilde{\gamma}$ die Liftung mit $\tilde{\gamma}(0) = y_0$.

$$\tilde{\gamma}(1) \in \{ y_0, \dots, y_{d-1} \}$$
 hängt nur von $[\gamma] \in \pi_1(X, x_0)$ ab.

Für geschlossene Wege γ_0, γ_1 um x gilt:

$$\begin{split} \tilde{\gamma_0}(1) &= \tilde{\gamma_1}(1) \\ \Leftrightarrow & [\tilde{\gamma_0} * \tilde{\gamma_1}^{-1}] \in \pi_1(Y, y_0) \\ \Leftrightarrow & [\gamma_0 * \gamma_1^{-1}] \in p_*(\pi_1(Y, y_0)) \\ \Leftrightarrow & [\gamma_0] \text{ und } [\gamma_1] \text{liegen in der selben Nebenklasse bzgl. } p_*(\pi_1(Y, y_0)) \end{split}$$

Zu
$$i \in \{0, ..., d-1\}$$
 gibt es Weg δ_i in Y mit $\delta_i(0) = y_0$ und $\delta_i(1) = y_i$ $\Rightarrow p \cup \delta_i$ ist geschlossener Weg in X um x_0 . \Rightarrow Jedes y_i mit $i = 0, ..., d-1$ ist $\tilde{\gamma}(1)$ für ein $[\gamma] \in \pi_1(X, x_0)$.

Bemerkung 57

Sei $p: Y \to X$ Überlagerung und X einfach zusammenhängend.

Dann ist p ein Homöomorphismus.

Beweis: Wegen Bemerkung 56.a ist auch Y einfach zusammenhängend und wegen Bemerkung 56.b ist deg(p) = 1, p ist also bijektiv.

Nach Bemerkung 52 ist p offen $\Rightarrow p^{-1}$ ist stetig. $\Rightarrow p$ ist Homöomorphismus.

Definition 51

Eine Überlagerung $p: \tilde{X} \to X$ heißt **universell**, wenn \tilde{X} einfach zusammenhängend ist.

Beispiel 37

$$\mathbb{R} \to S^1, \quad t \mapsto (\cos 2\pi t, \sin 2\pi t)$$

 $\mathbb{R}^2 \to T^2 = \mathbb{R}^2/\mathbb{Z}^2$
 $S^n \to \mathcal{P}^n(\mathbb{R}) \text{ für } n \ge 2$

Satz 3.5

Sei $p: \tilde{X} \to X$ eine universelle Überlagerung, $q: Y \to X$ weitere Überlagerung.

Sei
$$x_0 \in X, \tilde{x_0} \in \tilde{X}, y_0 \in Y \text{ mit } q(y_0) = x_0, p(\tilde{x_0}) = x_0.$$

Dann gibt es genau eine Überlagerung $\tilde{p}: \tilde{X} \to Y$ mit $\tilde{p}(\tilde{x_0}) = y_0$.

Beweis: Sei $z \in \tilde{X}, y_z : I \to \tilde{X}$ ein Weg von $\tilde{x_0}$ nach z.

Sei δ_Z die eindeutige Liftung von $p \circ \gamma_z$ nach y mit $\delta_2(0) = y_0$.

Setze
$$\tilde{p}(z) = \delta_Z(1)$$
.

Da \tilde{X} einfach zusammenhängend ist, hängt $\tilde{p}(z)$ nicht vom gewählten y_z ab.

Offensichtlich ist $q(\tilde{p}(z)) = p(z)$.

 \tilde{p} ist stetig (in $z \in \tilde{X}$). Sei $W \subseteq Y$ offene Umgebung von $\tilde{p}(z)$.

 $\xrightarrow{q \text{ offen}} q(W)$ ist offene Umgebung von $p(z) \cdot d(\tilde{p}(z))$.

Sei $U \subseteq q(W)$ offen wie in Definition 47 und $V \subseteq q^{-1}(U)$ die Komponente, die $\tilde{p}(z)$ enthält.

O. B. d. A. sei $V \subseteq W$.

Sei $Z := p^{-1}(U)$. Für $u \in Z$ sei δ ein Weg in Z von z nach u.

- $\Rightarrow \gamma_Z * \delta$ ist Weg von x_0 nach u
- $\Rightarrow \tilde{p}(u) \in V$
- $\Rightarrow Z \subseteq \tilde{p^{-1}}(W)$
- $\Rightarrow \tilde{p}$ ist stetig

Folgerung 3.6

Sind $p: \tilde{X} \to X$ und $q: \tilde{Y} \to X$ universelle Überlagerungen, so sind \tilde{X} und \tilde{Y} homöomorph.

Beweis: Seien $x_0 \in X$, $\tilde{x_0} \in \tilde{X}$ mit $p(\tilde{x_0}) = x_0$ und $\tilde{y_0} \in q^{-1}(x_0) \subseteq \tilde{Y}$.

Nach Satz 3.5 gibt es genau eine Überlagerung

$$f: \tilde{X} \to \tilde{Y} \text{ mit } f(x_0) = \tilde{Y_0} \text{ und } q \circ f = p$$

und genau eine Überlagerung

$$g: \tilde{Y} \to \tilde{X} \text{ mit } g(\tilde{y_0}) = \tilde{x_0} \text{ und } p \circ g = q$$

Damit gilt: $p \circ q \circ f = q \circ f = p$, $q \circ f \circ g = p \circ g = q$. Also ist $g \circ f : \tilde{X} \to \tilde{X}$ Lift von $p : \tilde{X} \to X$ mit $(g \circ f)(\tilde{x_0}) = \tilde{x_0}$.

Da auch $\mathrm{id}_{\tilde{x}}$ diese Eigenschaft hat, folgt mit Bemerkung 54: $g \circ f = \mathrm{id}_{\tilde{X}}$. Analog gilt $f \circ g = \mathrm{id}_{\tilde{Y}}$.

Die Frage, wann es eine universelle Überlagerung gibt, beantwortet der folgende Satz:

Satz 3.7

Es sei X ein wegzusammenhängender topologischer Raum in dem jeder Punkt eine Umgebungsbasis aus einfach zusammenhängenden Mengen hat.

Dann gibt es eine universelle Überlagerung.

Beweis: Sei $x_0 \in X$ und $\tilde{X} := \{ (x, [\gamma]) \mid x \in X, \gamma \text{ Weg von } x_o \text{ nach } x \} \text{ und } p : \tilde{X} \to X, (x, [\gamma]) \mapsto x$

Die Topologie auf \tilde{X} ist folgende: Definiere eine Umgebungsbasis von $(x, [\gamma])$ wie folgt: Es sei U eine einfach zusammenhängende Umgebung von x und

$$\tilde{U} = \tilde{U}(x, [\gamma]) := \{ \ (y, [\gamma * \alpha]) \mid y \in U, \alpha \text{ Weg in } U \text{ von } x \text{ nach } y \ \}$$

p ist Überlagerung: $p|_{\tilde{U}}: \tilde{U} \to U$ bijektiv. p ist stetig und damit $p|_{\tilde{U}}$ ein Homöomorphismus.

Sind γ_1, γ_2 Wege von x_0 nach x und $\gamma_1 \sim \gamma_2$, so ist $\tilde{U}(x, [\gamma_1]) \cap \tilde{U}(x, [\gamma_2]) = \emptyset$, denn: Ist $\gamma_1 * \alpha \sim \gamma_2 * \alpha$, so ist auch $\gamma_1 \sim \gamma_2$. Also ist p eine Überlagerung.

 \tilde{X} ist einfach zusammenhängend: Es sei $\tilde{x_0} := (x_0, e)$ und $\tilde{\gamma} : I \to \tilde{X}$ ein geschlossener Weg um $\tilde{x_0}$.

Sei $\gamma := p(\tilde{\gamma})$.

Annahme: $[\tilde{\gamma}] \neq e$

Mit Bemerkung 56.a folgt dann: $[\gamma] \neq e$.

Dann ist der Lift von γ nach \tilde{x} mit Anfangspunkt $\tilde{x_0}$ ein Weg von $\tilde{x_0}$ nach $(x_0, [\gamma])$. Widerspruch.

Definition 52

Es sei $p: Y \to X$ eine Überlagerung und $f: Y \to Y$ ein Homöomorphismus.

- a) f heißt **Decktransformation** von $p : \Leftrightarrow p \circ f = p$.
- b) Ist p eine Decktransformation und $|\operatorname{Deck}(Y/X)| = \deg p$, so heißt p regulär.

Bemerkung 58 (Eigenschaften der Decktransformation)

- a) Die Decktransformationen von p bilden eine Gruppe, die sog. **Decktransformations**gruppe $\operatorname{Deck}(p) = \operatorname{Deck}(Y/X) = \operatorname{Deck}(Y \to X)$
- b) Ist $f \in \text{Deck}(Y/X)$ und $f \neq \text{id}$, dann hat f keinen Fixpunkt.
- c) $|\operatorname{Deck}(Y/X)| \le \deg p$
- d) Ist f eine reguläre Decktransformation, dann gilt: $\forall x \in X : \text{Deck}(Y/X)$ operiert transitiv auf der Menge der Urbilder $f^{-1}(x)$.

Beweis:

- a) Es gilt:
 - $id_Y \in \operatorname{Deck} Y/X$,
 - $f, g \in \operatorname{Deck} Y/X \Rightarrow p \circ (f \circ g) = (p \circ f) \circ g = p \circ g \Rightarrow f \circ g \in \operatorname{Deck} Y/X$
 - $f \in \operatorname{Deck} Y/X \Rightarrow p \circ f = p \Rightarrow p \circ f^{-1} = (p \circ f) \circ f^{-1} = p \circ (f \circ f^{-1}) = p \Rightarrow f^{-1} \in \operatorname{Deck} Y/X$
- b) Die Menge

$$Fix(f) = \{ y \in Y \mid f(y) = y \}$$

ist abgeschlossen als Urbild der Diagonale $\Delta \subseteq Y \times Y$ unter der stetigen Abbildung $y \mapsto (f(y), y)$. Außerdem ist $\mathrm{Fix}(f)$ offen, denn ist $y \in \mathrm{Fix}(f)$, so sei U eine Umgebung von $p(y) \in X$ wie in Definition 47 und $U \subseteq p^{-1}(U)$ die Komponente, die y enthält; also $p: V \to U$ ein Homöomorphismus. Dann ist $W := f^{-1}(V) \cap V$ offene Umgebung von y.

Für $z \in W$ ist $f(z) \in V$ und p(f(z)) = p(z). Da p injektiv auf V ist, folgt f(z) = z, d. h. Fix $(f) \neq \emptyset$.

Da Y zusammenhängend ist, folgt aus $Fix(\tilde{f}) \neq \emptyset$ schon Fix(f) = Y, also $f = id_Y$.

c) Es sei $x_0 \in X$, $\deg(p) = d$ und $p^{-1}(x_0) = \{y_0, \dots, y_{d-1}\}$. Für $f \in \operatorname{Deck}(Y/X)$ ist $f(y_0) = \{y_0, \dots, y_{d-1}\}$.

Zu $i \in \{0, \ldots, d-1\}$ gibt es höchstens ein $f \in \text{Deck}(Y/X)$ mit $f(y_0) = y_1$, denn ist $f(y_0) = g(y_0)$, so ist $(g^{-1} \circ f)(y_0) = y_0$, also nach Bemerkung 58.c $g^{-1} \circ f = \text{id}_Y$.

Beispiel 38

- 1) $p: \mathbb{R} \to S^1 : \operatorname{Deck}(\mathbb{R}/S^1) = \{ t \mapsto t + n \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$
- 2) $p: \mathbb{R}^2 \to T^2 : \operatorname{Deck}(\mathbb{R}^2/T^2) \cong \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$
- 3) $p: S^n \to \mathcal{P}^n(\mathbb{R}) : \operatorname{Deck}(g^n/\mathcal{P}^n(\mathbb{R})) = \{ x \mapsto \pm x \} \cong \mathbb{Z}/2\mathbb{Z}$

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamentalgruppe herstellen:

Satz 3.8

Ist $p: \tilde{X} \to X$ eine universelle Überlagerung, so gilt:

$$\operatorname{Deck}(\tilde{X}/X) \cong \pi_1(X, x_0) \quad \forall x_0 \in X$$

Beweis: Wähle $\tilde{x_0} \in p^{-1}(x_0)$. Es sei ρ : Deck $(\tilde{x}/x) \to \pi_1(X, x_0)$ die Abbildung, die f auf $[p(\gamma_f)]$ abbildet, wobei γ_f ein Weg von $\tilde{x_0}$ nach $f(\tilde{x_0})$ sei. Da \tilde{x} einfach zusammenhängend ist, ist γ_f bis auf Homotopie eindeutig bestimmt und damit auch ρ wohldefiniert.

- $\underline{\rho}$ ist Gruppenhomomorphismus: Seien $f, g \in \text{Deck}(\tilde{X}/X) \Rightarrow \gamma_{g \circ f} = \gamma_g * g(\gamma_f) \Rightarrow p(\gamma_{g \circ f}) = p(\gamma_g) * \underbrace{(p \circ g)}_{=p}(\gamma_f) = \rho(g) \neq \rho(f)$
- ρ ist injektiv: $\rho(f) = e \Rightarrow p(\gamma_f) \sim \gamma_{x_0} \xrightarrow{\text{Satz 3.2}} \gamma_f \sim \gamma_{\tilde{x_0}} \Rightarrow f(x_0) = \tilde{x_0} \xrightarrow{\text{Bem. 58.c}} f = id_{\tilde{x}}.$
- $\underline{\rho}$ ist surjektiv: Sei $[\gamma] \in \pi_1(X, x_0)$, $\tilde{\gamma}$ Lift von γ nach \tilde{x} mit Anfangspunkt $\tilde{x_0}$. Der Endpunkt von $\tilde{\gamma}$ sei $\tilde{x_1}$.

 \underline{p} ist reguläre Überlagerung: Seien $\tilde{x_0}, \tilde{x_1} \in \tilde{X}$ mit $p(\tilde{x_0}) = p(\tilde{x_1})$. Nach Satz 3.5 gibt es genau eine Überlagerung $\tilde{p}: \tilde{X} \to X$ mit $p = p \circ \tilde{p}$ und $\tilde{p}(\tilde{x_0}) = \tilde{x_1}$. Somit ist \tilde{p} eine Decktransformation und damit p eine reguläre Überlagerung.

Da p reguläre Überlagerung ist, gibt es ein $f \in \text{Deck}(\tilde{X}/X)$ mit $f(\tilde{x_0}) = \tilde{x_1}$.

Aus der Definition von ρ folgt: $\rho(f) = p(\gamma_f) = \gamma$

Beispiel 39 (Bestimmung von $\pi_1(S^1)$)

 $p:\mathbb{R}\to S^1,\,t\mapsto(\cos 2\pi t,\sin 2\pi t)$ ist universelle Überlagerung, da \mathbb{R} zusammenhängend ist.

Für $n \in \mathbb{Z}$ sei $f_n : \mathbb{R} \to \mathbb{R}, t \mapsto t + n$ die Translation um n.

Es gilt: $(p \circ f_n)(t) = p(f_n(t)) = p(t) \quad \forall t \in \mathbb{R}, d. h. f_n \text{ ist Decktransformation.}$

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere für t=0:

$$(\cos(2\pi g(0)), \sin(2\pi g(0))) = (p \circ g)(0) = p(0) = (1, 0)$$

Es existiert $n \in \mathbb{Z}$ mit g(0) = n. Da auch $f_n(0) = 0 + n = n$ gilt, folgt mit Bemerkung 58.c $g = f_n$. Damit folgt:

$$\operatorname{Deck}(\mathbb{R}/S^1) = \{ f_n \mid n \in \mathbb{Z} \} \cong \mathbb{Z}$$

Nach Satz 3.8 also $\pi_1(S^1) \cong \operatorname{Deck}(\mathbb{R}/S^1) \cong \mathbb{Z}$

3.4 Gruppenoperationen

Definition 53

Sei (G, \cdot) eine Gruppe und X eine Menge.

Eine **Gruppenoperation** von G auf X ist eine Abbildung \circ :

$$\circ: G \times X \to X, \quad (g, x) \mapsto g \cdot x,$$

für die gilt:

- a) $1_G \circ x = x \quad \forall x \in X$
- b) $(g \cdot h) \circ x = g \circ (h \circ x) \quad \forall g, h \in G \forall x \in X$

Beispiel 40

- 1) $G = (\mathbb{Z}, +), X = \mathbb{R}, n \circ x = x + n$
- 2) G operiert auf X = G durch $g \circ h := g \cdot h$
- 3) G operiert auf X = G durch $g \circ h := g \cdot h \cdot g^{-1}$, denn
 - i) $1_G \circ h = 1_G \cdot h \cdot 1_G^{-1} = h$
 - ii) $(g_1 \cdot g_2) \circ h = (g_1 \cdot g_2) \cdot h \cdot (g \cdot g_2)^{-1}$ = $g_1 \cdot (g_2 \cdot h \cdot g_2^{-1}) \cdot g_1^{-1}$ = $g_1 \circ (g_2 \circ h)$

Definition 54

Sei G eine Gruppe, X ein topologischer Raum und $\circ: G \times X \to X$ eine Gruppenoperation.

a) G operiert durch Homöomorphismen, wenn für jedes $g \in G$ die Abbildung

$$m_q: X \to X, x \mapsto g \circ x$$

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation \circ **stetig**, wenn \circ : $G \times X \to X$ stetig ist.

Bemerkung 59

Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homöomorphismen.

Beweis: Nach Voraussetzung ist $m_g := \circ|_{\{g\} \times X} : X \to X, x \mapsto g \circ x$ stetig.

Die Umkehrabbildung zu m_g ist $m_{g^{-1}}$:

$$(m_{q^{-1}} \circ m_q)(x) = m_{q^{-1}}(m_q(x))$$

$$\begin{split} &= m_{g^{-1}}(g \circ x) \\ &= g^{-1} \circ (g \circ x) \\ \overset{\text{Def. 53,b-1}}{=} (g^{-1} \cdot g) \circ x \\ &= 1_G \circ x \\ &\xrightarrow{\text{Def. 53,a}} \end{split}$$

Beispiel 41

In Beispiel 40.1 operiert \mathbb{Z} durch Homöomorphismen.

Bemerkung 60

Sei G eine Gruppe und X eine Menge.

- a) Die Gruppenoperation von G auf X entsprechen bijektiv den Gruppenhomomorphismen $\varrho: G \to \operatorname{Perm}(X) = \operatorname{Sym}(X) = \{ f: X \to X \mid f \text{ ist bijektiv } \}$
- b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch Homöomorphismus den Gruppenhomomorphismen $G \to \text{Hom\"oo}(X)$

Beweis:

Sei $\circ: G \times X \to X$ eine Gruppenoperation von G auf X. Dann sei $\varrho: G \to \operatorname{Perm}(X)$ definiert durch $\varrho(g)(X) = g \cdot x \quad \forall g \in G, x \in X$, also $\varrho(g) = m_q$.

$$\varrho$$
 ist Homomorphismus: $\varrho(g_1\cdot g_2)=m_{g_1\cdot g_2}=m_{g_1}\circ m_{g_2}=\varrho(g_1)\circ\varrho(g_2),$ denn für $x\in X$: $\varrho(g_1\cdot g_2)(x)=(g_1\cdot g_2)\circ x=g_1\circ(g_2\circ x)=\varrho(g_1)(\varrho(g_2)(x))=(\varrho(g_1)\circ\varrho(g_2))(x)$

Umgekehrt: Sei $\varrho: G \to \operatorname{Perm}(X)$ Gruppenhomomorphismus. Definiere $\circ: G \times X \to X$ durch $g \circ x = \varrho(g)(x)$.

z. z. Definition 53.b:

$$g_{1} \circ (g_{2} \circ x) = \varrho(g_{1})(g_{2} \circ x)$$

$$= \varrho(g_{1})(\varrho(g_{2})(x))$$

$$= (\varrho(g_{1}) \circ \varrho(g_{2}))(x)$$

$$\stackrel{\varrho \text{ist Hom.}}{=} \varrho(g_{1} \cdot g_{2})(x)$$

$$= (g_{1} \cdot g_{2}) \circ x$$

z. z. Definition 53.a: $1_G \cdot x = \varrho(1_G)(x) = \mathrm{id}_X(x) = x$, weil ϱ Homomorphismus ist.

Beispiel 42

Sei X ein wegzusammenhängender topologischer Raum, $p: \tilde{X} \to X$ eine universelle Überlagerung, $x_0 \in X$, $\tilde{x_0} \in \tilde{X}$ mit $p(\tilde{x_0}) = x_0$.

Dann operiert $\pi_1(X, x_0)$ auf \tilde{X} durch Homöomorphismen wie folgt:

Für $[\gamma] \in \pi_1(X, x_0)$ und $\tilde{x} \in \tilde{X}$ sei $[\gamma] \circ \tilde{x} = \gamma * \varrho(1)$ wobei $\tilde{\gamma}$ ein Weg von $\tilde{x_0}$ nach \tilde{x} in \tilde{X} sei, $\varrho := \varrho(\tilde{\delta}) = \varrho \circ \delta$.

Also: δ ist ein Weg in X von x_0 nach $x = p(\tilde{x})$ und $\gamma * \delta$ die Liftung von $\gamma * \delta$ mit Anfangspunkt $\tilde{x_0}$.

 $[\gamma] \cdot \tilde{x}$ hängt nicht von der Wahl von $\tilde{\gamma}$ ab; ist $\tilde{\gamma}'$ ein anderer Weg von $\tilde{x_0}$ nach \tilde{x} , so sind $\tilde{\delta}$ und $\tilde{\delta}'$ homotop, also auch $\tilde{\gamma} * \tilde{\delta}$ und $\tilde{\gamma} * \tilde{\delta}'$ homotop.

Gruppenoperation, denn:

i)
$$[e] \circ \tilde{x} = \widetilde{e * \delta} = \tilde{x}$$

ii)
$$\gamma_1 * \gamma_2 * \delta(1) = [\gamma_1 * \gamma_2] \circ \tilde{x} = ([\gamma_1] * [\gamma_2]) \circ \tilde{x}$$

 $\gamma_1 * \gamma_2 * \delta(1) = [\gamma_1] \circ (\gamma_2 * \delta)(1) = [\gamma_1] \circ ([\gamma_2] \circ \tilde{x})$

Erinnerung:Die Konstruktion aus Bemerkung 60 induziert zu der Gruppenoperation $\pi_1(X, x_0)$ aus Beispiel 42 einen Gruppenhomomorphismus $\varrho : \pi_1(X, x_0) \to \operatorname{Hom\"oo}(X)$. Nach Satz 3.8 ist

$$\varrho(\pi_1(X, x_0)) = \operatorname{Deck}(\tilde{X}/X)$$

$$= \left\{ f : \tilde{X} \to \tilde{X} \text{ Hom\"{o}omorphismus } \middle| p \circ f = p \right\}$$

Beispiel 43

Sei $X:=S^2\subseteq\mathbb{R}^3$ und τ die Drehung um die z-Achse um 180°.

 $g = \langle \tau \rangle = \{ id, \tau \}$ operiert auf S^2 durch Homö
omorphismen.

Frage: Was ist S^2/G ? Ist S^2/G eine Mannigfaltigkeit?

4 Euklidische und nichteuklidische Geometrie

Definition 55

Das Tripel (X, d, G) heißt genau dann eine **Geometrie**, wenn (X, d) ein metrischer Raum und $\emptyset \neq G \subseteq \mathcal{P}(X)$ gilt. Dann heißt G die Menge aller **Geraden**.

4.1 Axiome für die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei sein, die Axiome sollen möglichst unabhängig sein und Vollständigkeit wäre auch toll. Mit Unabhängigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten lässt. Dies scheint auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhängig von den restlichen Axiomen ist, über 2000 Jahre nicht gelöst wurde. Ein ganz anderes Kaliber ist die Frage nach der Vollständigkeit. Ein Axiomensystem gilt als Vollständig, wenn jede Aussage innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gödelsche Unvollständigkeitssatz, der z. B. für die Arithmetik beweist, dass nicht alle Aussagen formal bewiesen oder widerlegt werden können.

Kehren wir nun jedoch zurück zur Geometrie. Euklid hat in seiner Abhandlung "Die Elemente" ein Axiomensystem für die Geometrie aufgestellt.

Euklids Axiome

- Strecke zwischen je zwei Punkten
- Jede Strecke bestimmt genau eine Gerade
- Kreis (um jeden Punkt mit jedem Radius)
- Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)
- Parallelenaxiom von Euklid:

Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel kleiner als zwei Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden parallel sind und senkrecht auf die erste stehen.

Definition 56

Eine euklidische Ebene ist eine Geometrie (X, d, G), die Axiome §1 - §5 erfüllt:

§1) Inzidenzaxiome:

- (i) Zu $P \neq Q \in X$ gibt es genau ein $g \in G$ mit $\{P, Q\} \subseteq g$.
- (ii) $|g| \ge 2 \quad \forall g \in G$
- (iii) $X \notin G$
- §2) **Abstandsaxiom**: Zu $P, Q, R \in X$ gibt es genau dann ein $g \in G$ mit $\{P, Q, R\} \subseteq g$, wenn gilt:
 - d(P,R) = d(P,Q) + d(Q,R) oder
 - d(P,Q) = d(P,R) + d(R,Q) oder
 - d(Q,R) = d(Q,P) + d(P,R)

Definition 57

Sei (X, d, G) eine Geometrie und seien $P, Q, R \in X$.

- a) P, Q, R liegen **kollinear**, wenn es $g \in G$ gibt mit $\{P, Q, R\} \subseteq g$.
- b) Q liegt zwischen P und R, wenn d(P,R) = d(P,Q) + d(Q,R)
- c) Strecke $\overline{PR} := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \}$
- d) Halbgeraden:

 $PR^+ := \{ \ Q \in X \mid Q \ \text{liegt zwischen} \ P \ \text{und} \ R \ \text{oder} \ R \ \text{liegt zwischen} \ P \ \text{und} \ Q \ \}$ $PR^- := \{ \ Q \in X \mid P \ \text{liegt zwischen} \ Q \ \text{und} \ R \ \}$

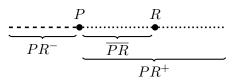


Abbildung 4.1: Halbgeraden

Bemerkung 61

- a) $PR^+ \cup PR^- = PR$
- b) $PR^{+} \cap PR^{-} = \{ P \}$

Beweis:

b) " \supseteq " ist offensichtlich " \subseteq ": Sei $PR^+ \cap PR^-$. Dann ist d(Q,R) = d(P,Q) + d(P,R) weil $Q \in PR^-$ und

$$\begin{cases} d(P,R) = d(P,Q) + d(Q,R) \text{ oder} \\ d(P,Q) = d(P,R) + d(R,Q) \end{cases}$$

$$\Rightarrow d(Q,R) = 2d(P,Q) + d(Q,R)$$

$$\Rightarrow d(P,Q) = 0$$

$$\Rightarrow P = Q$$

$$d(P,Q) = 2d(P,R) + d(P,Q)$$

$$\Rightarrow P = R$$

$$\Rightarrow \text{Widerspruch}$$

Definition 58

- §3) Anordnungsaxiome
 - (i) Zu jeder Halbgerade H mit Anfangspunkt $P \in X$ und jedem $r \in \mathbb{R}_{\geq 0}$ gibt es genau ein $Q \in H$ mit d(P,Q) = r.
 - (ii) Jede Gerade zerlegt $X \setminus g = H_1 \dot{\cup} H_2$ in zwei nichtleere Teilmengen H_1, H_2 , sodass für alle $A \in H_i$, $B \in H_j$ mit $i, j \in \{1, 2\}$ gilt: $\overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j$.

Diese Teilmengen H_i heißen **Halbebenen** bzgl. g.

- §4) **Bewegungsaxiom**: Zu $P, Q, P', Q' \in X$ mit d(P, Q) = d(P', Q') gibt es mindestens 2 Isometrien φ_1, φ_2 mit $\varphi_i(P) = P'$ und $\varphi_i(Q) = Q'$ mit i = 1, 2.¹
- §5) **Parallelenaxiom**: Zu jeder Geraden $g \in G$ und jedem Punkt $P \in X \setminus g$ gibt es höchstens ein $h \in G$ mit $P \in h$ und $h \cap g = \emptyset$. h heißt **Parallele zu** g durch P.

Satz 4.1 (Satz von Pasch)

Seien P, Q, R nicht kollinear, $g \in G$ mit $g \cap \{P, Q, R\} = \emptyset$ und $g \cap \overline{PQ} \neq \emptyset$.

Dann ist entweder $g \cap \overline{PR} \neq \emptyset$ oder $g \cap \overline{QR} \neq \emptyset$.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke) schneiden, auch eine weitere Seite schneiden.

Beweis: $g \cap \overline{PQ} \neq \emptyset$

 $\overset{3(ii)}{\Rightarrow} P$ und Q liegen in verschiedenen Halbebenen bzgl. g

 \Rightarrow o. B. d. A. R und P liegen in verschieden Halbebenen bzgl. q

 $\Rightarrow g \cap \overline{RP} \neq \emptyset$

Bemerkung 62

Sei $P, Q \in X$ mit $P \neq Q$ sowie $A, B \in X \setminus PQ$ mit $A \neq B$. Außerdem seien A und B in der selben Halbebene bzgl. PQ sowie Q und B in der selben Halbebene bzgl. PA.

Dann gilt: $PB^+ \cap \overline{AQ} \neq \emptyset$

Auch Bemerkung 62 lässt sich umgangssprachlich sehr viel einfacher ausdrücken: Die Diagonalen eines konvexen Vierecks schneiden sich.

Beweis: Sei $P' \in PQ^-, P' \neq P \xrightarrow{\text{Satz 4.1}} PB$ schneidet $\overline{AP'} \cup \overline{AQ}$

Sei C der Schnittpunkt. Dann gilt:

(i) $C \in PB^+$, denn A und B liegen in derselben Halbebene bzgl. PQ = P'Q, also auch $\overline{AP'}$ und \overline{AQ} .

 $^{^{1}}$ Die "Verschiebung" von P'Q' nach PQ und die Isometrie, die zusätzlich an der Gerade durch P und Q spiegelt.

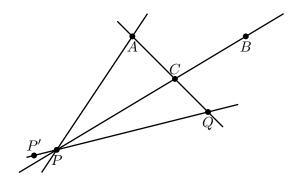


Abbildung 4.2: Situation aus Bemerkung 62

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das für Q gilt.

 $\overline{AP'}$ liegt in der anderen Halbebene bzgl. $PA \Rightarrow C \notin \overline{P'A} \Rightarrow C \in \overline{AQ}$

Da
$$C \in PB^+$$
 und $C \in \overline{AQ}$ folgt nun direkt: $\emptyset \neq \{C\} \subseteq PB^+ \cap \overline{AQ}$

Bemerkung 63

Seien $P, Q \in X$ mit $P \neq Q$ und $A, B \in X \setminus PQ$ in der selben Halbebene bzgl. PQ. Außerdem sei d(A, P) = d(B, P) und d(A, Q) = d(B, Q).

Dann ist A = B.

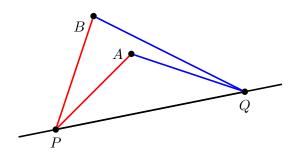


Abbildung 4.3: Bemerkung 63: Die beiden roten und die beiden blauen Linien sind gleich lang. Intuitiv weiß man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch

Annahme: $A \neq B$

Dann ist $B \notin (PA \cup QA)$ wegen §2.

 $\underline{1.~\mathrm{Fall}} \colon Q$ und Bliegen in derselben Halbebene bzgl. PA

$$\xrightarrow{\underline{\operatorname{Bem. 62}}} PB^+ \cap \overline{AQ} \neq \emptyset.$$

Sei C der Schnittpunkt vom PB und AQ.

Dann gilt:

(i)
$$d(A,C) + d(C,Q) = d(A,Q) \stackrel{\text{Vor.}}{=} d(B,Q) < d(B,C) + d(C,Q) \Rightarrow d(A,C) < d(B,C)$$

(ii) a) B liegt zwischen P und C. $d(P,A) + d(A,C) > d(P,C) = d(P,B) + d(B,C) = d(P,A) + d(B,C) \Rightarrow d(A,C) > d(B,C) \Rightarrow \text{Widerspruch zu Punkt (i)}$

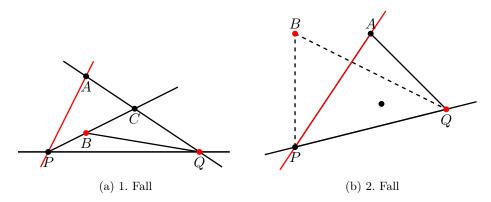


Abbildung 4.4: Fallunterscheidung aus Bemerkung 63

b) C liegt zwischen P und B

$$d(P,C) + d(C,A) > d(P,A) = d(P,B) = d(P,C) + d(C,B)$$

$$\Rightarrow d(C,A) > d(C,B)$$

$$\Rightarrow \text{Widerspruch zu Punkt (i)}$$

 $\underline{2}$. Fall: Q und B liegen auf verschieden Halbebenen bzgl. PA.

Dann liegen A und Q in derselben Halbebene bzgl. PB.

Tausche A und $B \Rightarrow$ Fall 1

Bemerkung 64

Sei (X, d, G) eine Geometrie, die §1 - §3 erfüllt, $P, Q \in X$ mit $P \neq Q$ und φ eine Isometrie mit $\varphi(P) = P$ und $\varphi(Q) = Q$.

Dann gilt $\varphi(S) = S \quad \forall S \in PQ$.

Beweis:

O. B. d. A. sei
$$S \in \overline{PQ} \stackrel{?}{\Leftrightarrow} d(P,Q) = d(P,S) + d(S,Q)$$

$$\stackrel{\varphi \in \operatorname{Iso}(X)}{\Rightarrow} d(\varphi(P), \varphi(Q)) = d(\varphi(P), \varphi(S)) + d(\varphi(S), \varphi(Q))$$

$$\stackrel{P,Q \in \operatorname{Fix}(\varphi)}{\Rightarrow} d(P,Q) = d(P,\varphi(S)) + d(\varphi(S),Q)$$

$$\Rightarrow \varphi(S) \text{ liegt zwischen } P \text{ und } Q$$

$$\Rightarrow d(P,S) = d(\varphi(P), \varphi(S)) = d(P,\varphi(S))$$

$$\stackrel{3(i)}{\Rightarrow} \varphi(S) = S$$

Proposition 4.2

In einer Geometrie, die §1 - §3 erfüllt, gibt es zu P, P', Q, Q' mit d(P,Q) = d(P',Q') höchstens zwei Isometrien mit $\varphi(P) = P'$ und $\varphi(Q) = Q'$

Aus den Axiomen folgt, dass es in der Situation von §4 höchstens zwei Isometrien mit $\varphi_i(P) = P'$ und $\varphi_i(Q) = Q'$ gibt.

Beweis: Seien $\varphi_1, \varphi_2, \varphi_3$ Isometrien mit $\varphi_i(P) = P', \varphi_i(Q) = Q'$ mit i = 1, 2, 3.

Der Beweis von Proposition 4.2 erfolgt über zwei Teilaussagen:

- (Teil i) $\exists R \in X \setminus PQ \text{ mit } \varphi_1(R) = \varphi_2(R).$
- (Teil ii) Hat φ 3 Fixpunkte, die nicht kollinear sind, so ist $\varphi = \mathrm{id}_X$.

Aus (Teil i) und (Teil ii) folgt, dass $\varphi_2^{-1} \circ \varphi_1 = \mathrm{id}_X$, also $\varphi_2 = \varphi_1$, da P, Q und R in diesem Fall Fixpunkte sind.

Nun zu den Beweisen der Teilaussagen:

(Teil i) Sei $R \in X \setminus PQ$. Von den drei Punkten $\varphi_1(R), \varphi_2(R), \varphi_3(R)$ liegen zwei in der selben Halbebene bzgl. $P'Q' = \varphi_i(PQ)$.

O. B. d. A. seien $\varphi_1(R)$ und $\varphi_2(R)$ in der selben Halbebene.

Es gilt:
$$d(P', \varphi_1(R)) = d(\varphi_1(P), \varphi_1(R))$$

 $= d(P, R)$
 $= d(\varphi_2(P), \varphi_2(R))$
 $= d(P', \varphi_2(R))$
 $= d(Q', \varphi_2(R))$

und analog $d(Q', \varphi_1(R)) = d(Q', \varphi_2(R))$

(Teil ii) Seien P, Q und R Fixpunkte von φ , $R \in PG$ und $A \notin \overline{PQ} \cup \overline{PR} \cup \overline{QR}$. Sei $B \in \overline{PQ} \setminus \{P,Q\}$. Dann ist $\varphi(B) = B$ wegen Bemerkung 64.

Ist $R \in AB$, so enthält AB 2 Fixpunkte von $\varphi \xrightarrow{\text{Bem. 64}} \varphi(A) = A$.

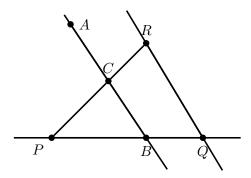


Abbildung 4.5: P, Q, R sind Fixpunkte, $B \in \overline{PQ} \setminus \{P, Q\}, A \notin PQ \cup PR \cup QR$

Ist $R \notin AB$, so ist $AB \cap \overline{PR} \neq \emptyset$ oder $AB \in \overline{RQ} \neq \emptyset$ nach Satz 4.1. Der Schnittpunkt C ist dann Fixpunkt von φ' nach Bemerkung $64 \Rightarrow \varphi(A) = A$.

Bemerkung 65

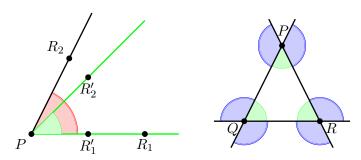
Mit Bemerkung 63 lassen sich die Kongruenzsätze für Dreiecke, wie man sie aus der Schule kennt, beweisen.

Definition 59

- a) Ein **Winkel** ist ein Punkt $P \in X$ zusammen mit 2 Halbgeraden mit Anfangspunkt P. Man schreibt: $\angle R_1 P R_2$ bzw. $\angle R_2 P R_1^2$
- b) Zwei Winkel sind **gleich**, wenn es eine Isometrie gibt, die den einen Winkel auf den anderen abbildet.

²Für dieses Skript gilt: $\angle R_1 P R_2 = \angle R_2 P R_1$. Also sind insbesondere alle Winkel $\leq 180^{\circ}$.

- c) $\angle R_1'P'R_2'$ heißt **kleiner** als $\angle R_1PR_2$, wenn es eine Isometrie φ gibt, mit $\varphi(P) = P'$, $\varphi(PR_1'^+) = P'R_1^+$ und $\varphi(R_2')$ liegt in der gleichen Halbebene bzgl. PR_1 wie R_2 und in der gleichen Halbebene bzgl. PR_2 wie R_1
- d) Im Dreieck $\triangle PQR$ gibt es **Innenwinkel** und **Außenwinkel**.



(a) $\angle R_1'P'R_2'$ ist kleiner als $\angle R_1PR_2$ (b) Innenwinkel und Außenwinvgl. Definition 59.c kel in $\triangle PQR$, vgl. Definition 59.d

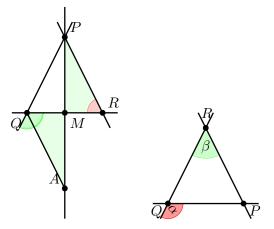
Abbildung 4.6: Situation aus Definition 59

Bemerkung 66

In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Außenwinkel.

Beweis: Zeige $\angle PRQ < \angle RQP'$.

Sei M der Mittelpunkt der Strecke \overline{QR} . Sei $A \in MP^-$ mit d(P,M) = d(M,A).



(a) Parallelogramm AQPR(b) Innen- und Außenwinkel von $\triangle PQR$

Abbildung 4.7: Situation aus Bemerkung 66

Es gilt: d(Q, M) = d(M, R) und d(P, M) = d(M, A) sowie $\angle PMR = \angle AMQ \Rightarrow \triangle MRQ$ ist kongruent zu $\triangle AMQ$, denn eine der beiden Isometrien, die $\angle PMR$ auf $\angle AMQ$ abbildet, bildet R auf Q und P auf A ab.

$$\Rightarrow \angle MQA = \angle MRP = \angle QRP = \angle PRQ.$$

Noch zu zeigen: $\angle MQA < \angle RQP'$, denn A liegt in der selben Halbebene bzgl. PQ wie M.

Proposition 4.3 (Existenz der Parallelen)

Sei (X, d, G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jeder Geraden $g \in G$ und jedem Punkt $P \in X \setminus g$ mindestens eine Parallele $h \in G$ mit $P \in h$ und $g \cap h = \emptyset$.

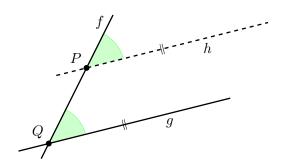


Abbildung 4.8: Situation aus Proposition 4.3

Beweis: (von Proposition 4.3) Seien $P, Q, R \in X$ mit $P, Q \in f \in G$.

Sei φ die Isometrie, die Q auf P und P auf $P' \in f$ mit d(P, P') = d(P, Q) abbildet und die Halbebenen bzgl. f erhält.

Annahme: $\varphi(g) \cap g \neq \emptyset$

 \Rightarrow Es gibt einen Schnittpunkt $\{R\} = \varphi(g) \cap g$.

Dann ist $\angle QPR < \angle RQP^-$ nach Bemerkung 66 und $\angle QPR = \angle RQP^-$, weil $\varphi(\angle RQP') = \angle RPQ$.

- \Rightarrow Widerspruch
- $\Rightarrow \varphi(g) \cap g = \emptyset$

Folgerung 4.4

Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als π .

D. h. es gibt eine Isometrie φ mit $\varphi(Q) = P$ und $\varphi(QP^+) = PR^+$, sodass $\varphi(R)$ in der gleichen Halbebene bzgl. PQ liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Außenwinkeln ist π , d. h. die beiden Halbgeraden bilden eine Gerade.

Proposition 4.5

In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der Innenwinkel $\leq \pi$.

Sei im Folgenden "IWS" die "Innenwinkelsumme".

Beweis: Sei \triangle ein Dreieck mit IWS(\triangle) = $\pi + \varepsilon$

Sei α ein Innenwinkel von \triangle .

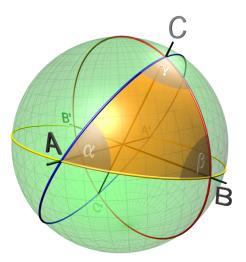


Abbildung 4.9: In der sphärischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie, Dreiecke mit drei 90°-Winkeln.

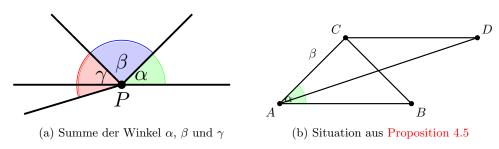


Abbildung 4.10: Situation aus Proposition 4.5

Beh.: Es gibt ein Dreieck \triangle' mit $IWS(\triangle') = IWS(\triangle)$ und einem Innenwinkel $\alpha' \leq \frac{\alpha}{2}$.

Dann gibt es für jedes n ein \triangle_n mit $\mathrm{IWS}(\triangle_n) = \mathrm{IWS}(\triangle)$ und Innenwinkel $\alpha' \leq \frac{\alpha}{2^n}$. Für $\frac{\alpha}{2^n} < \varepsilon$ ist dann die Summe der beiden Innenwinkel um \triangle_n größer als $\pi \Rightarrow$ Widerspruch zu Folgerung 4.4.

Beweis: (der Behauptung) Sei M der Mittelpunkt \overline{RC} und $A' \in MA^-$ mit $d(A', M) = d(A, M) \Rightarrow \triangle(MA'C)$ und $\triangle(MAB)$ sind kongruent. $\Rightarrow \angle ABM = \angle A'CM$ und $\angle MA'C = \angle MAB$. $\Rightarrow \alpha + \beta + \gamma = \mathrm{IWS}(\triangle ABC) = \mathrm{IWS}(\triangle AA'C)$ und $\alpha_1 + \alpha_2 = \alpha$, also o. B. d. A. $\alpha_1 \leq \frac{\alpha}{2}$

Bemerkung 67

In einer euklidischen Ebene ist in jedem Dreieck die Innenwinkelsumme gleich π .

Beweis: Sei g eine Parallele von AB durch C.

- Es gilt $\alpha' = \alpha$ wegen Proposition 4.3.
- Es gilt $\beta' = \beta$ wegen Proposition 4.3.
- Es gilt $\alpha'' = \alpha'$ wegen Aufgabe 7.

$$\Rightarrow$$
 IWS($\triangle ABC$) = $\gamma + \alpha'' + \beta' = \pi$

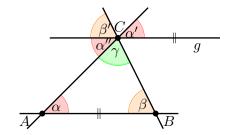


Abbildung 4.11: Situation aus Bemerkung 67

4.2 Weitere Eigenschaften einer euklidischen Ebene

Satz 4.6 (Strahlensatz)

In ähnlichen Dreiecken sind Verhältnisse entsprechender Seiten gleich.

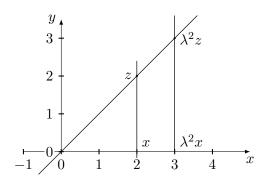


Abbildung 4.12: Strahlensatz

Der Beweis wird hier nicht geführt. Für Beweisvorschläge wäre ich dankbar.

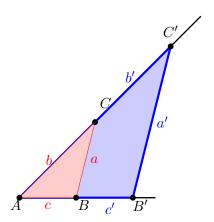


Abbildung 4.13: Die Dreiecke $\triangle ABC$ und $\triangle AB'C'$ sind ähnlich.

4.2.1 Flächeninhalt

Definition 60

"Simplizialkomplexe" in euklidischer Ebene (X, d) heißen **flächengleich**, wenn sie sich in kongruente Dreiecke zerlegen lassen.

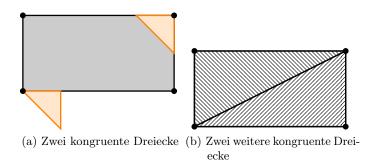


Abbildung 4.14: Flächengleichheit

Der Flächeninhalt eines Dreiecks ist 1/2 · Grundseite · Höhe.

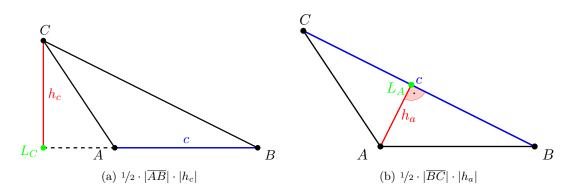


Abbildung 4.15: Flächenberechnung im Dreieck

Zu zeigen: Unabhängigkeit von der gewählten Grundseite.

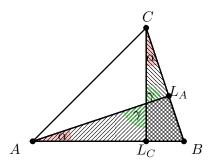


Abbildung 4.16: $\triangle ABL_a$ und $\triangle CL_CB$ sind ähnlich, weil IWS = π

$$\xrightarrow{\text{Strahlensatz}} \frac{a}{h_c} = \frac{c}{h_a} \to a \cdot h_a = c \cdot h_c$$

Satz 4.7 (Satz des Pythagoras)

Im rechtwinkligen Dreieck gilt $a^2 + b^2 = c^2$, wobei c die Hypothenuse und a, b die beiden Katheten sind.

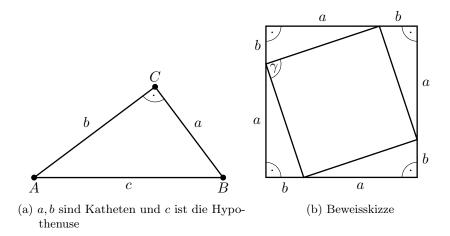


Abbildung 4.17: Satz des Pythagoras

Beweis: $(a+b) \cdot (a+b) = a^2 + 2ab + b^2 = c^2 + 4 \cdot (\frac{1}{2} \cdot a \cdot b)$

Satz 4.8

Bis auf Isometrie gibt es genau eine euklidische Ebene, nämlich $X=\mathbb{R}^2,\ d=$ euklidischer Abstand, G= Menge der üblichen Geraden.

Beweis:

- (i) $(\mathbb{R}^2, d_{\text{Euklid}})$ ist offensichtlich eine euklidische Ebene.
- (ii) Sei (X, d) eine euklidische Ebene und g_1, g_2 Geraden in X, die sich in einem Punkt 0 im rechten Winkel schneiden. Sei X der Fußpunkt des Lots von P auf g_1 (vgl. Aufgabe 8 (c)).

Sei Y der Fußpunkt des Lots von P auf g_2 .

Setze $h(P) := (x_P, y_P)$ mit $x_P := d(X, 0)$ und $y_P := d(Y, 0)$.

Dadurch wird $h: X \to \mathbb{R}^2$ auf dem Quadranten definiert, in dem P liegt (d. h. $\forall Q \in X$ mit $\overline{PQ} \cap g_1 = \emptyset = \overline{PQ} \cap g_2$) Fortsetzung auf ganz X durch konsistente Vorzeichenwahl.

Beh.: (1) h ist surjektiv

Beh.: (2) h ist abstandserhaltend (\rightarrow injektiv)

Beweis: (von 1) Sei $(x,y) \in \mathbb{R}^2$, z. B. $x \geq 0, y \geq 0$. Sei $P' \in g_1$ mit d(0,P') = x und P' auf der gleichen Seite von g_2 wie P.

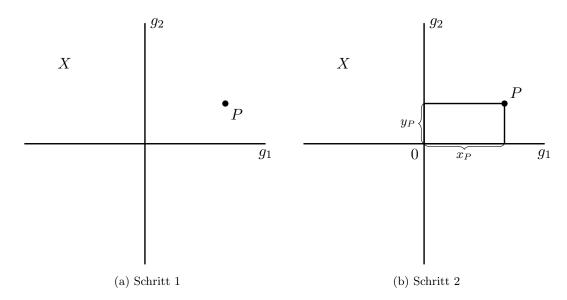


Abbildung 4.18: Beweis zu Satz 4.8

Beweis: (von 2) Zu Zeigen:
$$d(P,Q) = d(h(P), h(Q))$$

$$d(P,Q)^{2} \stackrel{\text{Pythagoras}}{=} d(P,R)^{2} + d(R,Q)^{2} = (y_{Q} - y_{P})^{2} + (x_{Q} - x_{P})^{2}.$$

$$h(Q) = (x_{Q}, y_{Q})$$

4.3 Hyperbolische Geometrie

Definition 61

Sei

$$\mathbb{H} := \{ z \in \mathbb{C} \mid \Im(z) > 0 \} = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$$

die obere Halbebene bzw. Poincaré-Halbebene und $G=G_1\cup G_2$ mit

$$G_{1} = \{ g_{1} \subseteq \mathbb{H} \mid \exists m \in \mathbb{R}, r \in \mathbb{R}_{>0} : g_{1} = \{ z \in \mathbb{H} : |z - m| = r \} \}$$

$$G_{2} = \{ g_{2} \subseteq \mathbb{H} \mid \exists x \in \mathbb{R} : g_{2} = \{ z \in \mathbb{H} : \Re(z) = x \} \}$$

Die Elemente aus G heißen hyperbolische Geraden.

Bemerkung 68 (Eigenschaften der hyperbolischen Geraden)

Die hyperbolischen Geraden erfüllen...

- a) ...die Inzidenzaxiome §1
- b) ...das Anordnungsaxiom §3 (ii)
- c) ... nicht das Parallelenaxiom §5

Beweis:

a) Offensichtlich sind §1 (iii) und §1 (ii) erfüllt. Für §1 (i) gilt: Gegeben $z_1, z_2 \in \mathbb{H}$ Existenz:

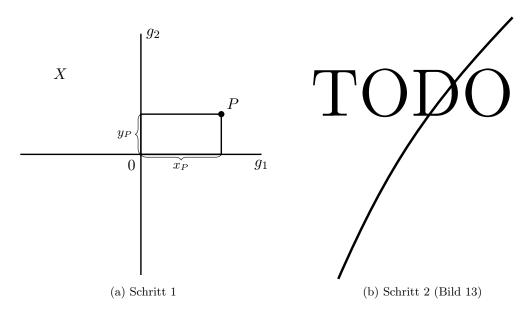


Abbildung 4.19: Beweis zu Satz 4.8

Fall 1
$$\Re(z_1) = \Re(z_2)$$

 $\Rightarrow z_1 \text{ und } z_2 \text{ liegen auf}$

$$g = \{ z \in \mathbb{C} \mid \Re(z) = \Re(z_1) \land \mathbb{H} \}$$

Siehe Abbildung 4.20a.

Fall 2
$$\Re(z_1) \neq \Re(z_2)$$

Betrachte nun z_1 und z_2 als Punkte in der euklidischen Ebene. Die Mittelsenkrechte zu diesen Punkten schneidet die x-Achse. Alle Punkte auf der Mittelsenkrechten zu z_1 und z_2 sind gleich weit von z_1 und z_2 entfernt. Daher ist der Schnittpunkt mit der x-Achse der Mittelpunkt eines Kreises durch z_1 und z_2 (vgl. Abbildung 4.20b)

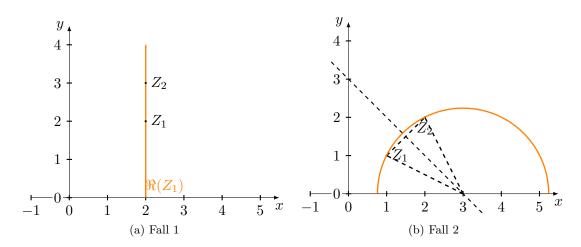


Abbildung 4.20: Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer Geraden

b) Sei
$$g \in G_1 \dot{\cup} G_2$$
 eine hyperbolische Gerade.
Fall 1: $g = \{ z \in \mathbb{H} \mid |z - m| = r \} \in G_1$

Dann gilt:

$$\mathbb{H} = \underbrace{\left\{ \ z \in \mathbb{H} \ \| \ z - m | < r \ \right\}}_{=:H_1 \ (\text{Kreisinneres})} \dot{\cup} \underbrace{\left\{ \ z \in \mathbb{H} \ \| \ z - m | < r \ \right\}}_{=:H_2 \ (\text{Kreisäußeres})}$$

Da r > 0 ist H_1 nicht leer, da $r \in \mathbb{R}$ ist H_2 nicht leer.

Zu zeigen: $\forall A \in H_i$, $B \in H_j$ mit $i, j \in \{1, 2\}$ gilt: $\overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j$ " \Leftarrow ": Da $d_{\mathbb{H}}$ stetig ist, folgt diese Richtung direkt. Alle Punkte in H_1 haben einen Abstand von m der kleiner ist als r und alle Punkte in H_2 haben einen Abstand von m der größer ist als r. Da man jede Strecke von A nach B insbesondere auch als stetige Abbildung $f: \mathbb{R} \to \mathbb{R}_{>0}$ auffassen kann, greift der Zwischenwertsatz $\Rightarrow \overline{AB} \cap g \neq \emptyset$

,,⇒":

TODO

Fall 2: $g = \{ z \in \mathbb{H} \mid \Re z = x \} \in G_2$ Die disjunkte Zerlegung ist:

$$\mathbb{H} = \underbrace{\left\{ z \in \mathbb{H} \mid \Re(z) < x \right\}}_{=:H_1 \text{ (Links)}} \dot{\cup} \underbrace{\left\{ z \in \mathbb{H} \mid \Re(z) > x \right\}}_{=:H_2 \text{ (Rechts)}}$$

<u>Zu zeigen:</u> $\forall A \in H_i, B \in H_j \text{ mit } i, j \in \{1, 2\} \text{ gilt: } \overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j$ "\equive": Wie zuvor mit dem Zwischenwertsatz.

,,⇒":

TODO

c) Siehe Abbildung 4.21.

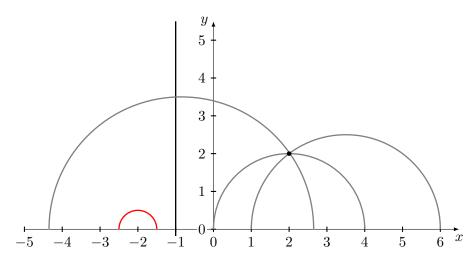


Abbildung 4.21: Hyperbolische Geraden erfüllen §5 nicht.

Definition 62

Es seien $a, b, c, d \in \mathbb{C}$ mit $ad - bc \neq 0$ und $\sigma : \mathbb{C} \to \mathbb{C}$ eine Abbildung definiert durch

$$\sigma(z) := \frac{az+b}{cz+d}$$

 σ heißt Möbiustransformation.

Proposition 4.9

a) Die Gruppe $SL_2(\mathbb{R})$ operiert auf \mathbb{H} durch die Möbiustransformation

$$\sigma(z) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z := \frac{az+b}{cz+d}$$

- b) Die Gruppe $\mathrm{PSL}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})/_{(\pm I)}$ operiert durch σ auf \mathbb{H} .
- c) $\operatorname{PSL}_2(\mathbb{R})$ operiert auf $\mathbb{R} \cup \{\infty\}$. Diese Gruppenoperation ist 3-fach transitiv, d. h. zu $x_0 < x_1 < x_\infty \in \mathbb{R}$ gibt es genau ein $\sigma \in \operatorname{PSL}_2(\mathbb{R})$ mit $\sigma(x_0) = 0$, $\sigma(x_1) = 1$, $\sigma(x_\infty) = \infty$.
- d) $SL_2(\mathbb{R})$ wird von den Matrizen

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ und } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ mit } a, \lambda \in \mathbb{R}$$

erzeugt.

e) $PSL_2(\mathbb{R})$ operiert auf G.

Beweis:

a) Sei
$$z = x + iy \in \mathbb{H}$$
, d. h. $y > 0$ und $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$

$$\begin{split} \Rightarrow \sigma(z) &= \frac{a(x+iy)+b}{c(x+iy)+d} \\ &= \frac{(ax+b)+iay}{(cx+d)+icy} \cdot \frac{(cx+d)-icy}{(cx+d)-icy} \\ &= \frac{(ax+b)(cx+d)+aycy}{(cx+d)^2+(cy)^2} + i \frac{ay(cx+d)-(ax+b)cy}{(cx+d)^2+(cy)^2} \\ &= \frac{axcx+axd+bcx+bd+aycy}{(cx+d)^2+(cy)^2} + i \frac{(ad-bc)y}{(cx+d)^2+(cy)^2} \\ &\stackrel{\mathrm{SL}_2(\mathbb{R})}{=} \frac{ac(x^2+y^2)+adx+bcx+bd}{(cx+d)^2+(cy)^2} + i \frac{y}{(cx+d)^2+(cy)^2} \end{split}$$

$$\Rightarrow \Im(\sigma(z)) = \frac{y}{(cx+d)^2 + (cy)^2} > 0$$

Die Abbildung bildet also nach H ab. Außerdem gilt:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \circ z = \frac{x+iy}{1} = x+iy = z$$

und

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ \begin{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \circ z \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ \frac{a'z + b'}{c'z + d'}$$
$$= \frac{a\frac{a'z + b'}{c'z + d'} + b}{c\frac{a'z + b'}{c'z + d'} + d}$$

$$= \frac{\frac{a(a'z+b')+b(c'z+d')}{c'z+d'}}{\frac{c'z+b'}{c'z+d'}}$$

$$= \frac{a(a'z+b')+d(c'z+d')}{c(a'z+b')+d(c'z+d')}$$

$$= \frac{(aa'+bc')+d(c'z+d')}{(aa'+bc')z+ab'+bd'}$$

$$= \frac{(aa'+bc')+bd'+bd'}{(aa'+bc')+bd'+bd'+bd'} \circ z$$

$$= \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}\right) \circ z$$

- b) Es gilt $\sigma(z) = (-\sigma)(z)$ für alle $\sigma \in \mathrm{SL}_2(\mathbb{R})$ und $z \in \mathbb{H}$.
- c) Ansatz: $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sigma(x_0) = \frac{ax_0 + b}{cx_0 + d} \stackrel{!}{=} 0 \Rightarrow ax_0 + b = 0 \Rightarrow b = -ax_0$ $\sigma(x_\infty) = \infty \Rightarrow cx_\infty + d = 0 \Rightarrow d = -x_\infty$ $\sigma(x_1) = 1 \Rightarrow ax_1 + b = cx_1 + d$ $a(x_1 x_0) = c(x_1 x_\infty) \Rightarrow c = a\frac{x_1 x_0}{x_1 x_\infty}$ $\Rightarrow -a^2 \cdot x_\infty \frac{x_1 x_0}{x_1 x_\infty} + a^2 x_0 \frac{x_1 x_0}{x_1 x_\infty} = 1$ $\Rightarrow a^2 \frac{x_1 x_0}{x_1 x_\infty} (x_0 x_\infty) = 1 \Rightarrow a^2 = \frac{x_1 x_\infty}{(x_1 x_\infty)(x_1 x_0)}$
- d) TODO d)
- e) Es genügt die Aussage für Matrizen aus Proposition 4.9 (d) zu zeigen.
 - $\sigma = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, also $\sigma(z) = \lambda^2 z$. Daraus ergeben sich die Situationen, die in Abbildung 4.22a und Abbildung 4.22b dargestellt sind.

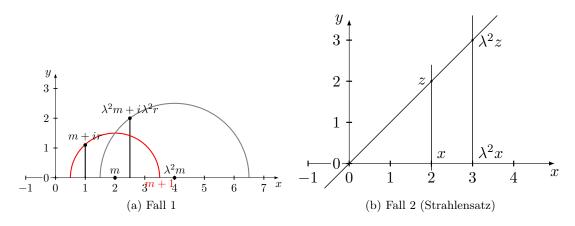


Abbildung 4.22: Beweis von Proposition 4.9 (e) für eine Diagonalmatrix

- Offensichtlich gilt die Aussage für $\sigma = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$
- Sei nun $\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, also $\sigma(z) = -\frac{1}{z}$

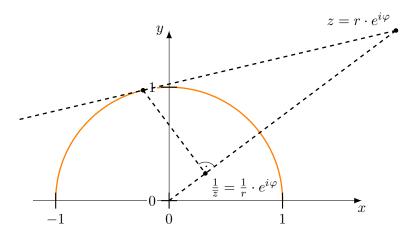


Abbildung 4.23: Inversion am Kreis

Bemerkung 69

Zu hyperbolischen Geraden g_1, g_2 gibt es $\sigma \in \mathrm{PSL}_2(\mathbb{R})$ mit $\sigma(g_1) = g_2$.

Beweis: Nach Proposition 4.9 (c) gibt es σ mit $\sigma(a_1) = b_1$ und $\sigma(a_2) = b_2$. Dann existiert $\sigma(g_1) := g_2$ wegen dem Inzidenzaxiom §1 und ist eindeutig bestimmt.

Definition 63

Seien $z_1, z_2, z_3, z_4 \in \mathbb{C}$ paarweise verschieden.

Dann heißt

$$DV(z_1, z_2, z_3, z_4) := \frac{\frac{z_1 - z_4}{z_1 - z_2}}{\frac{z_3 - z_4}{z_3 - z_2}} = \frac{(z_1 - z_4) \cdot (z_3 - z_2)}{(z_1 - z_2) \cdot (z_3 - z_4)}$$

Doppelverhältnis von z_1, \ldots, z_4 .

Bemerkung 70 (Eigenschaften des Doppelverhältnisses)

- a) $\mathrm{DV}(z_1,\ldots,z_4)\in\mathbb{C}\setminus\{0,1\}$
- b) $DV(z_1, z_4, z_3, z_2) = \frac{1}{DV(z_1, z_2, z_3, z_4)}$
- c) $DV(z_3, z_2, z_1, z_4) = \frac{1}{DV(z_1, z_2, z_3, z_4)}$
- d) DV ist auch wohldefiniert, wenn eines der $z_i = \infty$ oder wenn zwei der z_i gleich sind.
- e) $DV(0,1,\infty,z_4)=z_4$ (Der Fall $z_4 \in \{0,1,\infty\}$ ist zugelassen).
- f) Für $\sigma \in \mathrm{PSL}_2(\mathbb{C})$ und $z_1, \ldots, z_4 \in \mathbb{C} \cup \{\infty\}$ ist

$$DV(\sigma(z_1), \sigma(z_2), \sigma(z_3), \sigma(z_4)) = DV(z_1, z_2, z_3, z_4)$$

und für $\sigma(z) = \frac{1}{z}$ gilt

$$\mathrm{DV}(\sigma(z_1),\sigma(z_2),\sigma(z_3),\sigma(z_4)) = \overline{\mathrm{DV}(z_1,z_2,z_3,z_4)}$$

g) $\mathrm{DV}(z_1, z_2, z_3, z_4) \in \mathbb{R} \cup \{\infty\} \Leftrightarrow z_1, \ldots, z_4 \text{ liegen auf einer hyperbolischen Geraden.}$

Beweis:

a) $DV(z_1, ..., z_4) \neq 0$, da z_i paarweise verschieden $DV(z_1, ..., z_4) \neq 1$, da:

Annahme:
$$DV(z_1, \ldots, z_4) = 1$$

$$\Leftrightarrow (z_1 - z_2)(z_3 - z_4) = (z_1 - z_4)(z_3 - z_2)$$

$$\Leftrightarrow z_1 z_3 - z_2 z_3 - z_1 z_4 + z_2 z_4 = z_1 z_3 - z_3 z_4 - z_1 z_2 + z_2 z_4$$

$$\Leftrightarrow z_2 z_3 + z_1 z_4 = z_3 z_4 + z_1 z_2$$

$$\Leftrightarrow z_2 z_3 - z_3 z_4 = z_1 z_2 - z_1 z_4$$

$$\Leftrightarrow z_3 (z_2 - z_4) = z_1 (z_2 - z_4)$$

$$\Leftrightarrow z_3 = z_1 \text{ oder } z_2 = z_4$$

Alle z_i sind paarweise verschieden \Rightarrow Widerspruch

b)
$$DV(z_1, z_4, z_3, z_2) = \frac{(z_1 - z_2) \cdot (z_3 - z_4)}{(z_1 - z_4) \cdot (z_3 - z_2)} = \frac{1}{DV(z_1, z_2, z_3, z_4)}$$

c)
$$DV(z_3, z_2, z_1, z_4) = \frac{(z_3 - z_4) \cdot (z_1 - z_2)}{(z_3 - z_2) \cdot (z_1 - z_4)} = \frac{1}{DV(z_1, z_2, z_3, z_4)}$$

d) Zwei der z_i dürfen gleich sein, da:

Fall 1
$$z_1 = z_4$$
 oder $z_3 = z_2$
In diesem Fall ist $DV(z_1, \dots, z_4) = 0$

Fall 2 $z_1 = z_2$ oder $z_3 = z_4$ Mit der Regel von L'Hospital folgt, dass in diesem Fall $DV(z_1, \ldots, z_4) = \infty$ gilt.

Fall 3
$$z_1 = z_3$$
 oder $z_2 = z_4$
Durch Einsetzen ergibt sich $DV(z_1, ..., z_4) = 1$.

Im Fall, dass ein $z_i = \infty$ ist, ist entweder $DV(0, 1, \infty, z_4) = 0$ oder $DV(0, 1, \infty, z_4) \pm \infty$

e)
$$DV(0,1,\infty,z_4) = \frac{(0-z_4)\cdot(\infty-1)}{(0-1)\cdot(\infty-z_4)} = \frac{z_4\cdot(\infty-1)}{\infty-z_4} = z_4$$

f) TODO

g) Sei
$$\sigma \in \mathrm{PSL}_2(\mathbb{C})$$
 mit $\sigma(z_1) = 0$, $\sigma(z_2) = 1$, $\sigma(z_3) = \infty$ (gibt es?)

$$\stackrel{\text{Bem. 70.f}}{\Rightarrow} \text{DV}(z_1, \dots, z_4) = \text{DV}(0, 1, \infty, \sigma(z_4))$$

$$\Rightarrow \text{DV}(z_1, \dots, z_4) \in \mathbb{R} \cup \{\infty\}$$

$$\Leftrightarrow \sigma(z_4) \in \mathbb{R} \cup \{\infty\}$$

Behauptung folgt, weil $\sigma(\mathbb{R} \cup \infty)$ ein Kreis oder eine Gerade in \mathbb{C} ist.

Definition 64

Für $z_1, z_2 \in \mathbb{H}$ sei g_{z_1, z_2} die eindeutige hyperbolische Gerade durch z_1 und z_2 und a_1, a_2 die "Schnittpunkte" von g_{z_1, z_2} mit $\mathbb{R} \cup \{\infty\}$.

Dann sei $d_{\mathbb{H}}(z_1, z_2) := \frac{1}{2} |\ln \mathrm{DV}(a_1, z_1, a_2, z_2)|$ und heiße **hyperbolische Metrik**.

Beh.: Für $z_1, z_2 \in \mathbb{H}$ sei g_{z_1, z_2} die eindeutige hyperbolische Gerade durch z_1 und z_2 und a_1, a_2 die "Schnittpunkte" von g_{z_1, z_2} mit $\mathbb{R} \cup \{\infty\}$.

Dann gilt:

$$\frac{1}{2}|\ln \mathrm{DV}(a_1,z_1,a_2,z_2)| = \frac{1}{2}|\ln \mathrm{DV}(a_2,z_1,a_1,z_2)|$$

Beweis: Wegen Bemerkung 70.c gilt:

$$DV(a_1, z_1, a_2, z_2) = \frac{1}{DV(a_2, z_1, a_1, z_2)}$$

Außerdem gilt:

$$\ln \frac{1}{x} = \ln x^{-1} = (-1) \cdot \ln x = -\ln x$$

Da der ln im Betrag steht, folgt direkt:

$$\frac{1}{2}|\ln \mathrm{DV}(a_1,z_1,a_2,z_2)| = \frac{1}{2}|\ln \mathrm{DV}(a_2,z_1,a_1,z_2)|$$

Es ist also egal in welcher Reihenfolge die "Schnittpunkte" mit der x-Achse im Doppelverhältnis genutzt werden.

Beh.: Die hyperbolische Metrik ist eine Metrik auf H.

Beweis: Wegen Bemerkung 70.f ist

$$d(z_1, z_2) := d(\sigma(z_1), \sigma(z_2)) \text{ mit } \sigma(a_1) = 0, \ \sigma(a_2) = \infty$$

d. h. $\sigma(g_{z_1,z_2}) = i\mathbb{R}$ (imaginäre Achse).

also gilt o. B. d. A. $z_1 = ia$ und $z_2 = ib$ mit $a, b \in \mathbb{R}$ und a < b.

$$2d(ia, ib) = \ln | DV(0, ia, \infty, ib) |$$

$$= \ln | \frac{(0 - ib)(\infty - ia)}{(0 - ia)(\infty - ib)} |$$

$$= \ln | \frac{b}{a} |$$

$$= \ln b - \ln a$$

Also: $d(z_1, z_2) \ge 0$, $d(z_1, z_2) = 0 \Leftrightarrow z_1 = z_2$

$$2d(z_{2}, z_{1}) = \ln DV(a_{2}, z_{2}, a_{1}, z_{1})$$

$$= \ln DV(\infty, ib, 0, ia)$$

$$\stackrel{\text{Bem. 70.b}}{=} \ln DV(0, ib, \infty, ia)$$

$$= 2d(z_{1}, z_{2})$$

Liegen drei Punkte $z_1, z_2, z_3 \in \mathbb{C}$ auf einer hyperbolischen Geraden, so gilt $d(z_1, z_3) = d(z_1, z_2) + d(z_2, z_3)$ (wenn z_2 zwischen z_1 und z_3 liegt).

Dreiecksungleichung: Beweis ist umständlich und wird hier nicht geführt. Es sei auf die Vorlesung "Hyperbolische Geometrie" verwiesen.

Satz 4.10

Die hyperbolische Ebene $\mathbb H$ mit der hyperbolischen Metrik d und den hyperbolischen Geraden bildet eine "nichteuklidische Geometrie", d. h. die Axiome §1 - §4 sind erfüllt, aber Axiom §5 ist verletzt.

Übungsaufgaben

Aufgabe 7

Seien (X,d) eine absolute Ebene und $P,Q,R\in X$ Punkte. Der Scheitelwinkel des Winkels $\angle PQR$ ist der Winkel, der aus den Halbgeraden QP^- und QR^- gebildet wird. Die Nebenwinkel von $\angle PQR$ sind die von QP^+ und QR^- bzw. QP^- und QR^+ gebildeten Winkel.

Zeigen Sie:

- (a) Die beiden Nebenwinkel von $\angle PQR$ sind gleich.
- (b) Der Winkel $\angle PQR$ ist gleich seinem Scheitelwinkel.

Aufgabe 8

Sei (X, d) eine absolute Ebene. Der Abstand eines Punktes P zu einer Menge $Y \subseteq X$ von Punkten ist definiert durch $d(P, Y) := \inf d(P, y)|y \in Y$.

Zeigen Sie:

- (a) Ist $\triangle ABC$ ein Dreieck, in dem die Seiten \overline{AB} und \overline{AC} kongruent sind, so sind die Winkel $\angle ABC$ und $\angle BCA$ gleich.
- (b) Ist $\triangle ABC$ ein beliebiges Dreieck, so liegt der längeren Seite der größere Winkel gegenüber und umgekehrt.
- (c) Sind g eine Gerade und $P \notin g$ ein Punkt, so gibt es eine eindeutige Gerade h mit $P \in h$ und die g im rechten Winkel schneidet. Diese Grade heißt Lot von P auf g und der Schnittpunkt des Lots mit g heißt $Lotfu\beta punkt$.

Aufgabe 9

Seien $f, g, h \in G$ und paarweise verschieden.

Zeigen Sie: $f \parallel g \land g \parallel h \Rightarrow f \parallel h$

Aufgabe 10

Beweise den Kongruenzsatz SSS.

5 Krümmung

5.1 Krümmung von Kurven

Definition 65

Sei $\gamma: I = [a, b] \to \mathbb{R}^n$ eine C^{∞} -Funktion.

- a) γ heißt durch Bogenlänge parametrisiert, wenn $\|\gamma'(t)\|_2 = 1$ für alle $t \in I$. Dabei ist $\gamma'(t) = (\gamma_1'(t), \gamma_2'(t), \dots, \gamma_n'(t))$
- b) $l(\gamma) = \int_a^b \|\gamma'(t)\| \mathrm{d}t$ heißt Länge von γ

Bemerkung 71 (Eigenschaften von Kurven I)

Sei $\gamma:I=[a,b]\to\mathbb{R}^n$ eine C^∞ -Funktion.

- a) Ist γ durch Bogenlänge parametrisiert, so ist $l(\gamma) = b a$.
- b) Ist γ durch Bogenlänge parametrisiert, so ist $\gamma'(t)$ orthogonal zu $\gamma''(t)$ für alle $t \in I$.

Beweis: von Bemerkung 71.b:

$$1 = \|\gamma'(t)\| = \|\gamma'(t)\|^2 = \langle \gamma'(t), \gamma'(t) \rangle$$

$$\Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t} \langle \gamma'(t), \gamma'(t) \rangle$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (\gamma_1'(t)\gamma_1'(t) + \gamma_2'(t)\gamma_2'(t))$$

$$= 2(\gamma_1''(t) \cdot \gamma_1'(t) + \gamma_2''(t) \cdot \gamma_2'(t))$$

$$= 2\langle \gamma''(t), \gamma'(t) \rangle$$

Definition 66

Sei $\gamma: I \to \mathbb{R}^2$ eine durch Bogenlänge parametrisierte Kurve.

a) Für $t \in I$ sei n(t) Normalenvektor an γ in t, d. h.

$$\langle n(t), \gamma'(t) \rangle = 0, \quad ||n(t)|| = 1$$

und $\det((\gamma'_1(t), n(t))) = +1.$

b) Nach Bemerkung 71.b sind n(t) und $\gamma''(t)$ linear abhängig, d. h. es gibt $\kappa(t) \in \mathbb{R}$ mit

$$\gamma''(t) = \kappa(t) \cdot n(t)$$

 $\kappa(t)$ heißt **Krümmung** von γ in t.

85 5.2. TANGENTIALEBENE

Beispiel 44

Gegeben sei ein Kreis mit Radius r, d. h. mit Umfang $2\pi r$. Es gilt:

$$\gamma(t) = \left(r \cdot \cos \frac{t}{r}, r \cdot \sin \frac{t}{r}\right) \text{ für } t \in [0, 2\pi r]$$

ist parametrisiert durch Bogenlänge.

$$\gamma'(t) = \left((r \cdot \frac{1}{r})(-\sin\frac{t}{r}), r\frac{1}{r}\cos\frac{t}{r} \right)$$

$$= \left(-\sin\frac{t}{r}, \cos\frac{t}{r} \right)$$

$$\Rightarrow n(t) = \left(-\cos\frac{t}{r}, -\sin\frac{t}{r} \right)$$

$$\gamma''(t) = \left(-\frac{1}{r}\cos\frac{t}{r}, -\frac{1}{r}\sin\frac{t}{r} \right)$$

$$= \frac{1}{r} \cdot \left(-\cos\frac{t}{r}, -\sin\frac{t}{r} \right)$$

$$\Rightarrow \kappa(t) = \frac{1}{r}$$

Definition 67

Sei $\gamma: I \to \mathbb{R}^3$ eine durch Bogenlänge parametrisierte Kurve.

- a) Für $t \in I$ heißt $\kappa(t) := \|\gamma''(t)\|$ die **Krümmung** von γ in t.
- b) Ist für $t \in I$ die Ableitung $\gamma''(t) \neq 0$, so heißt $\gamma''(t)$ Normalenvektor an γ in t.
- c) b(t) sei ein Vektor, der $\gamma'(t)$, n(t) zu einer orientierten Orthonormalbasis von \mathbb{R}^3 ergänzt. Also gilt:

$$\det(\gamma'(t), n(t), b(t)) = 1$$

b(t) heißt **Binormalenvektor**, die Orthonormalbasis

$$\{ \gamma'(t), n(t), b(t) \}$$

heißt begleitendes Dreibein.

Bemerkung 72 (Eigenschaften von Kurven II)

Sei $\gamma: I \to \mathbb{R}^3$ durch Bogenlänge parametrisierte Kurve.

- a) n(t) ist orthogonal zu $\gamma'(t)$.
- b) b(t) aus Definition 67.c ist eindeutig.

5.2 Tangentialebene

Erinnerung Sie sich an Definition 32 "reguläre Fläche".

Äquivalent dazu ist: S ist lokal von der Form

$$V(f) = \left\{ x \in \mathbb{R}^3 \mid f(x) = 0 \right\}$$

für eine C^{∞} -Funktion $f: \mathbb{R}^3 \to \mathbb{R}$.

86 5.2. TANGENTIALEBENE

Definition 68

Sei $S\subseteq\mathbb{R}^3$ eine reguläre Fläche, $s\in S,\, F:U\to V\cap S$ eine lokale Parametrisierung um s (d. h. $s\in V$)

$$(u,v) \mapsto (x(u,v),y(u,v),z(u,v))$$

Für $p = F^{-1}(s) \in U$ sei

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

und $D_P F : \mathbb{R}^2 \to \mathbb{R}^3$ die durch $J_F(p)$ definierte lineare Abbildung.

Dann heißt $T_sS := \text{Bild}(D_pF)$ die **Tangentialebene** an $s \in S$.

Bemerkung 73

 $T_s S$ ist 2-dimensionaler Untervektorraum von \mathbb{R}^3 .

Bemerkung 74

 T_sS hängt nicht von der gewählten Parametrisierung ab.

Beweis:

Beh.: $T_sS = \{x \in \mathbb{R}^3 | \exists \text{parametrisierte Kurve } \gamma : [-\varepsilon, +\varepsilon] \to S \text{ für ein } \varepsilon > 0 \text{ mit } \gamma(0) = s \text{ und } \gamma'(0) = x\}$

Bemerkung 75

Sei S = V(f) eine reguläre Fläche in \mathbb{R}^3 , also $f : V \to \mathbb{R}$ eine C^{∞} -Funktion, $V \subseteq \mathbb{R}^3$ offen, $\operatorname{grad}(f)(x) \neq 0$ für alle $x \in S$.

Dann ist $T_s S = (\operatorname{grad}(f)(s))^{\perp}$ für jedes $s \in S$.

Beweis: Sei $x \in T_s S$, $\gamma : [-\varepsilon, +\varepsilon] \to S$ eine parametrisierte Kurve mit $\varepsilon > 0$ und $\gamma'(0) = s$, sodass $\gamma'(0) = x$ gilt. Da $\gamma(t) \in S$ für alle $t \in [-\varepsilon, \varepsilon]$, ist $f \circ \gamma = 0$ $\Rightarrow 0 = (f \circ \gamma)'(0) = \langle \operatorname{grad}(f)(\gamma(0)), \gamma'(0) \rangle$ $\Rightarrow T_s S \subseteq \operatorname{grad}(f)(s)^{\perp}$ $\xrightarrow{\dim=2} T_s S = (\operatorname{grad}(f)(s))^{\perp}$

Definition 69

- a) Ein **Normalenfeld** auf der Fläche $S \subseteq \mathbb{R}^3$ ist eine Abbildung $n: S \to S^2 \subseteq \mathbb{R}^3$ mit $n(s) \in T_s S^{\perp}$ für jedes $s \in S$.
- b) S heißt **orientierbar**, wenn es ein stetiges Normalenfeld auf S gibt.

Manchmal wird zwischen einem Normalenfeld und einem Einheitsnormalenfeld unterschieden. Im folgenden werden diese Begriffe jedoch synonym benutzt.

Bemerkung 76 (Eigenschaften von Normalenfeldern)

- a) Ein Normalenfeld auf S ist genau dann stetig, wenn es glatt ist (also C^{∞}).
- b) Zu jedem $s \in S$ gibt es eine Umgebung $V \subseteq \mathbb{R}^3$ von s und eine lokale Parametrisierung $F: U \to V$ von S um s, sodass auf $F(U) = V \cap S$ ein stetiges Normalenfeld existiert.
- c) S ist genau dann orientierbar, wenn es einen differenzierbaren Atlas von S aus lokalen Parametrisierungen $F_i: U_i \to V_i, i \in I$ gibt, sodass für alle $i, j \in F$ und alle $s \in V_i \cap V_j \cap S$ gilt:

$$\det(\underbrace{D_s \overbrace{F_j \circ F_i^{-1}}^{V_i \to V_j}}_{\in \mathbb{R}^{3 \times 3}}) < 0$$

87 5.3. GAUSS-KRÜMMUNG

Beweis: Wird hier nicht geführt.

Beispiel 45

- 1) $S = S^2$, $n_1 = \mathrm{id}_{S^2}$ ist stetiges Normalenfeld. $n_2 = -\mathrm{id}_{S^2}$ ist auch stetiges Normalenfeld.
- 2) S = M"obiusband (vgl. Abbildung 5.1) ist nicht orientierbar. Es existiert ein Normalenfeld, aber kein stetiges Normalenfeld.

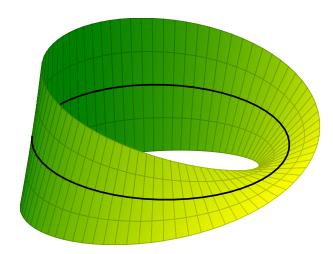


Abbildung 5.1: Möbiusband

5.3 Gauß-Krümmung

Bemerkung 77

Sei S eine reguläre Fläche, $s \in S$, n(s) ist ein Normalenvektor in $s, x \in T_s(S)$, ||x|| = 1.

Sei E der von x und n(s) aufgespannte 2-dimensionale Untervektorraum von \mathbb{R}^3 .

Dann gibt es eine Umgebung $V \subseteq \mathbb{R}^3$ von s, sodass

$$C := (s + E) \cap S \cap V$$

das Bild einer durch Bogenlänge parametrisierten Kurve $\gamma: [-\varepsilon, \varepsilon] \to s$ enthält mit $\gamma(0) = s$ und $\gamma'(0) = x$.

Beweis: "Satz über implizite Funktionen", siehe z. B. github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis\%20II

Definition 70

In der Situation aus Bemerkung 77 heißt die Krümmung $\kappa_{\gamma}(0)$ der Kurve γ in der Ebene (s+E) im Punkt s die **Normalkrümmung**¹ von S in s in Richtung $x=\gamma'(0)$.

Man scheibt: $\kappa_{\gamma}(0) := \kappa_{Nor}(s, x)$

Beispiel 46

1) $S = S^2 = V(X^2 + Y^2 + Z^2 - 1)$ ist die Kugel um den Ursprung mit Radius 1, $n = \mathrm{id}$, s = (0,0,1), x = (1,0,0) $\Rightarrow E = \mathbb{R} \cdot x + \mathbb{R} \cdot n(s) \ (x,z\text{-Ebene})$

¹Die Krümmung ist nur bis auf das Vorzeichen bestimmt.

88 5.3. GAUSS-KRÜMMUNG

$$C=E\cap S$$
ist Kreislinie $\kappa_{\mathrm{Nor}}(s,x)=\frac{1}{r}=1$

2) $S = V(X^2 + Z^2 - 1) \subseteq \mathbb{R}^3$ ist ein Zylinder (siehe Abbildung 5.2a). s = (1,0,0) $x_1 = (0,1,0) \Rightarrow E_1 = \mathbb{R} \cdot e_1 + \mathbb{R} \cdot e_2$ (x,y-Ebene) $S \cap E_1 = V(X^2 + Y^2 - 1) \cap E$, Kreislinie in $E \Rightarrow \kappa_{\text{Nor}}(s,x_1) = \pm 1$ $x_2 = (0,0,1), E_2 = \mathbb{R} \cdot e_1 + \mathbb{R} \cdot e_3$ (x,z-Ebene) $V \cap E_2 \cap S = \{ (1,0,z) \in \mathbb{R}^3 \mid z \in \mathbb{R} \}$ ist eine Gerade $\Rightarrow \kappa_{\text{Nor}}(s,x_2) = 0$

3) $S = V(X^2 - Y^2 - Z)$, s = (0,0,0) (Hyperbolisches Paraboloid, siehe Abbildung 5.2b) $x_1 = (1,0,0)$, n(s) = (0,0,1) $x_2 = (0,1,0)$ $\kappa_{\text{Nor}}(s,x_1) = 2$ $\kappa_{\text{Nor}}(s,x_2) = -2$

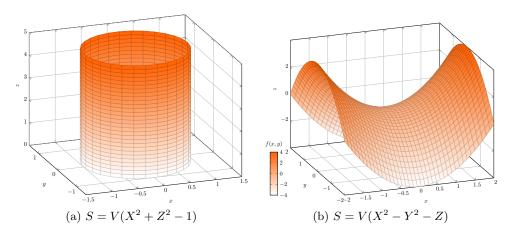


Abbildung 5.2: Beispiele für reguläre Flächen

Definition 71

Sei $S \subseteq \mathbb{R}^3$ eine reguläre Fläche, $s \in S$, (n ein stetiges Normalenfeld auf S)

 $\gamma:[-\varepsilon,\varepsilon]\to S$ eine nach Bogenlänge parametrisierte Kurve ($\varepsilon>0)$ mit $\gamma(0)=s$ und $\gamma''(0)\neq 0.$

Sei $n(0) := \frac{\gamma''(0)}{\|\gamma''(0)\|}$. Zerlege $n(0) = n(0) + n(0)^{\perp}$ mit $n(0)^{\perp} \in T_s S$ und $n(0)^{\perp} \in (T_s S)^{\perp}$.

Dann ist $n(0)^\perp = \langle n(0), n(s) \rangle \cdot n(s)$

 $\kappa_{\text{Nor}}(s,\gamma) := \langle \gamma''(0), n(s) \rangle$ die Normalkrümmung.

Bemerkung 78

Sei $\overline{\gamma}(t) = \gamma(-t), t \in [-\varepsilon, \varepsilon]$. Dann ist $\kappa_{\text{Nor}}(s, \overline{\gamma}) = \kappa_{\text{Nor}}(s, \gamma)$.

Beweis: $\bar{\gamma}''(0) = \gamma''(0)$, da $\bar{\gamma}'(0) = -\gamma'(0)$.

Es gilt: $\kappa_{Nor}(s, \gamma)$ hängt nur von $|\gamma'(0)|$ ab und ist gleich $\kappa_{Nor}(s, \gamma'(0))$.

Bemerkung 79

Sei S eine reguläre Fläche und n = n(s) ein Normalenvektor an S in s.

Sei $T_s^1 S = \{ x \in T_s S \mid ||x|| = 1 \} \cong S^1$. Dann ist $\kappa_{\text{Nor}}^n(s) : T_s S \to \mathbb{R}, x \mapsto \kappa_{\text{Nor}}(s, x)$ eine glatte Funktion und Bild $\kappa_{\text{Nor}}(s)$ ist ein abgeschlossenes Intervall.

Definition 72

Sei S eine reguläre Fläche und n = n(s) ein Normalenvektor an S in s.

- a) $\kappa_1^n(s) := \min \left\{ \kappa_{\text{Nor}}^n(s, x) \mid x \in T_s^1 S \right\}$ und $\kappa_2^n(s) := \max \left\{ \kappa_{\text{Nor}}^n(s, x) \mid x \in T_s^1 S \right\}$ heißen **Hauptkrümmungen** von S in s.
- b) $K(s) := \kappa_1^n(s) \cdot \kappa_2^n(s)$ heißt Gauß-Krümmung von S in s.

Bemerkung 80

Ersetzt man
$$n$$
 durch $-n$, so gilt: $\kappa_{\operatorname{Nor}}^{-n}(s,x) = -\kappa_{\operatorname{Nor}}^n(x) \, \forall x \in T_s^1 S$ $\Rightarrow \kappa_1^{-n}(s) = -\kappa_2^n(s),$ $\kappa_2^{-n}(s) = -\kappa_1^n(s)$ und $K^{-n}(s) = K^n(s) =: K(s).$

Beispiel 47

- 1) $S = S^2$. Dann ist $\kappa_1(s) = \kappa_2(s) = \pm 1 \ \forall s \in S^2$ $\Rightarrow K(s) = 1$
- 2) Zylinder: $\kappa_1(s) = 0, \kappa_2(s) = 1 \Rightarrow K(s) = 0$
- 3) Sattelpunkt auf hyperbolischem Paraboloid: $\kappa_1(s) < 0, \kappa_2(s) = 0 \rightarrow K(s) < 0$
- 4) S = Torus. Siehe Abbildung 5.3

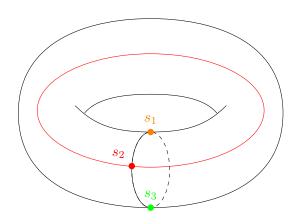


Abbildung 5.3: $K(s_1) > 0$, $K(s_2) = 0$, $K(s_3) < 0$

Bemerkung 81

Sei S eine reguläre Fläche, $s \in S$ ein Punkt.

- a) Ist K(s) > 0, so liegt S in einer Umgebung von s ganz auf einer Seite von $T_sS + s$.
- b) Ist K(s) < 0, so schneidet jede Umgebung von s in S beide Seiten von $T_sS + s$.

5.4 Erste und zweite Fundamentalform

Sei $S \subseteq \mathbb{R}^3$ eine reguläre Fläche, $s \in S$, T_sS die Tangentialebene an S in s.

Bemerkung 82

a) Die Einschränkung des Standardskalarproduktes des \mathbb{R}^3 auf T_sS macht T_sS zu einem euklidischen Vektorraum.

- b) Sei $F: U \to V$ eine lokale Parametrisierung von S um s und $p := F^{-1}(s)$. Dann ist $\{D_P F(e_1), D_P F(e_2)\}$ eine Basis von $T_s S$.
- c) Bzgl. der Basis $\{D_PF(e_1), D_PF(e_2)\}$ hat das Standardskalarprodukt aus Bemerkung 82.a die Darstellungsmatrix

$$\begin{split} I_S &= \begin{pmatrix} g_{1,1}(s) & g_{1,2}(s) \\ g_{1,2}(s) & g_{2,2}(s) \end{pmatrix} = \begin{pmatrix} E(s) & F(s) \\ F(s) & G(s) \end{pmatrix} \\ \text{mit } g_{i,j} &= g_s(D_PF(e_i), D_PF(e_j)) \\ &= \langle \frac{\partial F}{\partial u_i}(p), \frac{\partial F}{\partial u_j}(p) \rangle \quad i, j \in \{\ 1, 2\ \} \end{split}$$

Die Matrix I_S heißt erste Fundamentalform von S bzgl. der Parametrisierung F.

d) $g_{i,j}(s)$ ist eine differenzierbare Funktion von s.

Bemerkung 83

$$\det(I_S) = \left\| \frac{\partial F}{\partial u_1}(p) \times \frac{\partial F}{\partial u_2}(p) \right\|^2$$
Beweis: Sei $\frac{\partial F}{\partial u_1}(p) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $\frac{\partial F}{\partial u_2}(p) = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

$$Dann \text{ ist } \frac{\partial F}{\partial u_1}(p) \times \frac{\partial F}{\partial u_2}(p) = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \text{ mit}$$

$$z_1 = x_2 y_3 - x_3 - y_2$$

$$z_2 = x_3 y_1 - x_1 y_3$$

$$z_3 = x_1 y_2 - x_2 y_1$$

$$\Rightarrow \| \frac{\partial F}{\partial u_1}(p) \times \frac{\partial F}{\partial u_2}(p) \| = z_1^2 + z_2^2 + z_3^2$$

$$\det(I_S) = g_{1,1}g_{2,2} - g_{1,2}^2$$

$$= \left\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right\rangle - \left\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right\rangle^2$$

$$= (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2$$

Definition 73

a) Das Differential

$$dA = \sqrt{\det(I)} du_1 du_2$$

heißt **Flächenelement** von S bzgl. der Parametrisierung F.

b) Für eine Funktion $f: V \to \mathbb{R}$ heißt

$$\int_{V} f dA := \int_{U} f(\underbrace{F(u_1, u_2)}) \sqrt{\det I(s)} du_1 du_2$$

der Wert des Integrals von f über V, falls das Integral rechts existiert.

Bemerkung 84

- a) $\int_V f dA$ ist unabhänig von der gewählten Parametrisierung.
- b) Sei $f: S \to \mathbb{R}$ eine Funktion, die im Sinne von Definition 73.b lokal integrierbar ist. Dann ist $\int_S f dA$ wohldefiniert, falls (z. B.) S kompakt ist.

Etwa:
$$\int_S f dA = \sum_{i=1}^n \int_{V_i} f dA - \sum_{i \neq j} \int_{V_i \cap V_j} f dA + \sum_{i,j,k} \int_{V_i \cap V_j \cap V_k} - \dots$$

Beweis: a) Mit Transformationsformel

b) Ist dem Leser überlassen

Proposition 5.1

Sei $S \subseteq \mathbb{R}^3$ eine reguläre, orientierbare Fläche mit glatten Normalenfeld $n: S \to S^2$. Dann gilt:

a) n induziert für jedes $s \in S$ eine lineare Abbildung $d_S n : T_s S \to T_{n(s)} S^2$ durch

$$d_s n(x) = \frac{\mathrm{d}}{\mathrm{d}t} n(\underbrace{s, +\text{``}tx}) \Big|_{t=0}$$
Soll auf Fläche S bleiber

- b) $T_{n(s)}S^2 = T_sS$.
- c) $d_S n$ ist ein Endomorphismus von $T_s S$.
- d) $d_S n$ ist selbstadjungiert bzgl. des Skalarproduktes I_S .

Beweis:

- a) TODO
- b) $T_{n(S)}S^2 = \langle n(s)\rangle^{\perp} = T_s S$
- c) TODO
- d) Zu zeigen: $\forall x, y \in I_s S : \langle x, d_s n(y) \rangle = \langle d_s n(x), y \rangle$

Aufgrund der Bilinearität des Skalarproduktes genügt es diese Eigenschaft für die Basisvektoren zu zeigen.

Sei
$$x_i = D_P F(e_i) = \frac{\partial F}{\partial u_i}(p)$$
 $i = 1, 2$

Beh.:
$$\langle x_i, d_s n(x_j) \rangle = \langle \frac{\partial^2 F}{\partial u_i \partial u_j}(p), d_s n(x_i) \rangle$$

$$\Rightarrow \langle \frac{\partial^2 F}{\partial u_i \partial u_i}(p), d_s n(x_i) \rangle = \langle x_j, d_s n(x_i) \rangle$$

Bew.:

$$0 = \left\langle \frac{\partial F}{\partial u}(p + te_j), n(p + te_j) \right\rangle$$

$$\Rightarrow 0 = \frac{\mathrm{d}}{\mathrm{d}t} \left(\left\langle \frac{\partial F}{\partial u}(p + te_j), n(p + te_j) \right\rangle \right) \Big|_{t=0}$$

$$= \left\langle \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial F}{\partial u_i}(p + te_j)}_{\frac{\partial^2 F}{\partial u_i \partial u_j}(p)} \right|_{t=0}, n(s) \right\rangle + \left\langle x_i, d_s n \underbrace{D_P F(e_j)}_{x_j} \right\rangle$$

Definition 74

Die durch $-d_s n$ definierte symmetrische Bilinearform auf $T_s S$ heißt **zweite Fundamental-** form von S in s bzgl. F.

Man schreibt: $II_s(x,y) = \langle -d_s n(x), y \rangle = I_s(-d_s n(x), y)$

Bemerkung 85

Bezüglich der Basis $\{x_1, x_2\}$ von T_sS hat II_s die Darstellungsmatrix

$$(h_{i,j}^{(s)})_{i,j=1,2} \text{ mit } h_{i,j}(s) = \langle \frac{\partial^2 F}{\partial u_i \partial u_j}(p), n(s) \rangle$$

Proposition 5.2

Sei $\gamma: [-\varepsilon, \varepsilon] \to S$ eine nach Bogenlänge parametrisierte Kurve mit $\gamma(0) = s$. Dann gilt:

$$\kappa_{\text{Nor}}(s,\gamma) = II_s(\gamma'(0),\gamma'(0))$$

Beweis: Nach Definition 71 ist $\kappa_{Nor}(s,\gamma) = \langle \gamma''(0), n(s) \rangle$. Nach Voraussetzung ist $n(\gamma(t)) \perp \gamma'(t) \Leftrightarrow \langle \gamma''(0), n(s) \rangle = 0$. Die Ableitung nach t ergibt

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}(\langle n(\gamma(t)), \gamma'(t))$$

$$= \left\langle \frac{\mathrm{d}}{\mathrm{d}t} n(\gamma(t)) \Big|_{t=0}, \gamma'(0) \right\rangle + \left\langle n(s), \gamma''(0) \right\rangle$$

$$= \left\langle d_s n(\gamma'(0)), \gamma'(0) \right\rangle + \kappa(s, \gamma)$$

$$= -II_s(\gamma'(0), \gamma'(0)) + \kappa(s, \gamma)$$

Folgerung 5.3

Die beiden Definitionen von Normalkrümmung in Abschnitt 5.1 stimmen überein:

$$\kappa_{\text{Nor}}(s, \gamma) = \kappa_{\text{Nor}}(s, \gamma'(0))$$

Satz 5.4

Sei $S \subseteq \mathbb{R}^3$ eine reguläre, orientierbare Fläche und $s \in S$.

- a) Die Hauptkrümmungen $\kappa_1(s), \kappa_2(s)$ sind die Eigenwerte von II_s .
- b) Für die Gaußkrümmung gilt: $K(s) = \det(II_s)$

Beweis:

a) II_s ist symmetrisch, I_sS hat also eine Orthonormalbasis aus Eigenvektoren y_1, y_2 von II_s . Ist $x \in T_sS$, ||x|| = 1, so gibt es $\varphi \in [0, 2\pi)$ mit $x = \cos \varphi \cdot y_1 + \sin \varphi \cdot y_2$.

Seien λ_1, λ_2 die Eigenwerte von II_s , also $II_s(y_i, y_i) = \lambda_i$. Dann gilt:

$$II_{s}(x,x) = \cos^{2}\varphi\lambda_{1} + \sin^{2}\varphi\lambda_{2}$$

$$= (1 - \sin^{2}\varphi)\lambda_{1} + \sin^{2}\varphi\lambda_{2}$$

$$= \lambda_{1} + \sin^{2}\varphi(\lambda_{2} - \lambda_{1}) \geq \lambda_{1}$$

$$= \cos^{2}\varphi + (1 - \cos^{2}\varphi)\lambda_{2}$$

$$= \lambda_{2} - \cos^{2}\varphi(\lambda_{2} - \lambda_{1}) \leq \lambda_{2}$$

$$\xrightarrow{\text{Prop. 5.2}} \lambda_{1} = \min \left\{ \kappa_{\text{Nor}}(s,x) \mid x \in T_{s}^{1}S \right\}$$

$$\lambda_{2} = \max \left\{ \kappa_{\text{Nor}}(s,x) \mid x \in T_{s}^{1}S \right\}$$

Satz 5.5 (Satz von Gauß-Bonnet)

Sei $S \subseteq \mathbb{R}^3$ eine kompakte orientierbare reguläre Fläche. Dann gilt:

$$\int_{S} K(s) \mathrm{d}A = 2\pi \chi(S)$$

Dabei ist $\chi(S)$ die Euler-Charakteristik von S.

Beweis: Der Beweis wird hier nicht geführt. Er kann in "Elementare Differentialgeometrie" von Christian Bär (2. Auflage), ISBN 978-3-11-022458-0, ab Seite 281 nachgelesen werden.

Lösungen der Übungsaufgaben

Lösung zu Aufgabe 1

Teilaufgabe a) Es gilt:

- (i) $\emptyset, X \in \mathfrak{T}_X$.
- (ii) \mathfrak{T}_X ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt für alle $U_1, U_2 \in \mathfrak{T}_X : U_1 \cap U_2 \in \mathfrak{T}_X$.
- (iii) Auch unter beliebigen Vereinigungen ist \mathfrak{T}_X abgeschlossen, d. h. es gilt für eine beliebige Indexmenge I und alle $U_i \in \mathfrak{T}_X$ für alle $i \in I : \bigcup_{i \in I} U_i \in \mathfrak{T}_X$

Also ist (X, \mathfrak{T}_X) ein topologischer Raum.

Teilaufgabe b) Wähle x = 1, y = 0. Dann gilt $x \neq y$ und die einzige Umgebung von x ist X. Da $y = 0 \in X$ können also x und y nicht durch offene Mengen getrennt werden. (X, \mathfrak{T}_X) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 4 sind metrische Räume hausdorffsch. Da (X, \mathfrak{T}_X) nach (b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X, \mathfrak{T}_X) kein metrischer Raum sein kann.

Lösung zu Aufgabe 2

Teilaufgabe a)

Beh.: $\forall a \in \mathbb{Z} : \{a\}$ ist abgeschlossen.

Sei $a \in \mathbb{Z}$ beliebig. Dann gilt:

Hat jemand diesen Beweis?

Teilaufgabe b)

Beh.: $\{-1,1\}$ ist nicht offen

Bew.: durch Widerspruch

Annahme: $\{-1,1\}$ ist offen.

Dann gibt es $T \subseteq \mathfrak{B}$, sodass $\bigcup_{M \in T} M = \{-1, 1\}$. Aber alle $U \in \mathfrak{B}$ haben unendlich viele Elemente. Auch endlich viele Schnitte von Elementen in \mathfrak{B} haben unendlich viele Elemente \Rightarrow keine endliche nicht-leere Menge kann in dieser Topologie offen sein $\Rightarrow \{-1, 1\}$ ist nicht offen.

Teilaufgabe c)

Beh.: Es gibt unendlich viele Primzahlen.

Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen $p \in \mathbb{P}$

Dann ist

$$\mathbb{Z}\setminus\{\,-1,+1\,\}\stackrel{\mathrm{FS}\ \mathrm{d.}}{=} \stackrel{\mathrm{Arithmetik}}{=} \bigcup_{p\in\mathbb{P}} U_{0,p}$$

endlich. Das ist ein Widerspruch zu $|\mathbb{Z}|$ ist unendlich und $|\{-1,1\}|$ ist endlich.

Lösung zu Aufgabe 3

(a) **Beh.:** Die offenen Mengen von P sind Vereinigungen von Mengen der Form

$$\prod_{j\in J} U_j \times \prod_{i\in\mathbb{N}, i\neq j} P_i$$

wobei $J \subseteq \mathbb{N}$ endlich und $U_j \subseteq P_j$ offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form

$$\prod_{i\in J} U_j \times \prod_{\substack{i\in \mathbb{N}\\ i\notin J}} P_i, \text{ wobei } J\subseteq \mathbb{N} \text{ endlich und } U_j\subseteq P_j \text{ offen } \forall j\in J$$

eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen von Mengen der obigen Form.

(b) **Beh.:** Die Zusammenhangskomponenten von *P* sind alle einpunktig.

Beweis: Es seinen $x, y \in P$ und x sowie y liegen in der gleichen Zusammenhangskomponente $Z \subseteq P$. Da Z zusammenhängend ist und $\forall i \in I : p_i : P \to P_i$ ist stetig, ist $p_i(Z) \subseteq P_i$ zusammenhängend für alle $i \in \mathbb{N}$. Die zusammenhängenden Mengen von P_i sind genau $\{0\}$ und $\{1\}$, d. h. für alle $i \in \mathbb{N}$ gilt entweder $p_i(Z) \subseteq \{0\}$ oder $p_i(Z) \subseteq \{1\}$. Es sei $z_i \in \{0,1\}$ so, dass $p_i(Z) \subseteq \{z_i\}$ für alle $i \in \mathbb{N}$. Dann gilt also:

$$\underbrace{p_i(x)}_{=x_i} = z_i = \underbrace{p_i(y)}_{=y_i} \forall i \in \mathbb{N}$$

Somit folgt: x = y

Lösung zu Aufgabe 4

(a) **Beh.**: $GL_n(\mathbb{R})$ ist nicht kompakt. **Bew.**: $\det: GL_n(\mathbb{R}) \to \mathbb{R} \setminus \{0\}$ ist stetig. Außerdem ist $\det(GL_n(\mathbb{R})) = \mathbb{R} \setminus \{0\}$ nicht kompakt. $\stackrel{23}{\Longrightarrow} GL_n(\mathbb{R})$ ist nicht kompakt.

(b) **Beh.**: $\mathrm{SL}_1(\mathbb{R})$ ist nicht kompakt, für n > 1 ist $\mathrm{SL}_n(\mathbb{R})$ kompakt. **Bew.**: Für $\mathrm{SL}_1(\mathbb{R})$ gilt: $\mathrm{SL}_1(\mathbb{R}) = \{ A \in \mathbb{R}^{1 \times 1} \mid \det A = 1 \} = (1) \cong \{ 1 \}. \stackrel{23}{\Rightarrow} \mathrm{SL}_1(\mathbb{R})$ ist kompakt. $\mathrm{SL}_n(\mathbb{R}) \subseteq \mathrm{GL}_n(\mathbb{R})$ lässt sich mit einer Teilmenge des \mathbb{R}^{n^2} identifizieren. Nach Satz 1.1 sind diese genau dann kompakt, wenn sie beschränkt und abgeschlossen sind. Definiere nun für für $n \in \mathbb{N}_{\geq 2}, m \in \mathbb{N}$:

$$A_m = \operatorname{diag}_n(m, \frac{1}{m}, \dots, 1)$$

Dann gilt: det $A_m = 1$, d. h. $A_m \in \mathrm{SL}_n(\mathbb{R})$, und A_m ist unbeschränkt, da $||A_m||_{\infty} = m \xrightarrow[m \to \infty]{} \infty$.

(c) **Beh.:** $\mathcal{P}(\mathbb{R})$ ist kompakt.

Bew.: $\mathcal{P}(\mathbb{R}) \cong S^n/_{x \sim -x}$. Per Definition der Quotiententopologie ist die Klassenabbildung stetig. Da S^n als abgeschlossene und beschränkte Teilmenge des \mathbb{R}^{n+1} kompakt ist $\stackrel{23}{\rightleftharpoons} \mathcal{P}(\mathbb{R})$ ist kompakt.

Lösung zu Aufgabe 5

Die Definition von Homöomorphismus kann auf Seite 9 nachgelesen werden.

Definition 75

Seien (G, *) und (H, \circ) Gruppen und $\varphi : G \to H$ eine Abbildung.

 φ heißt **Homomorphismus**, wenn

$$\forall g_1, g_2 \in G : \varphi(g_1 * g_2) = \varphi(g_1) \circ \varphi(g_2)$$

gilt.

Es folgt direkt:

- 1) Sei $X = \mathbb{R}$ mit der Standarttopologie und $\varphi_1 : \mathrm{id}_{\mathbb{R}}$ und $\mathbb{R} = (\mathbb{R}, +)$. Dann ist φ_1 ein Gruppenhomomorphismus und ein Homöomorphismus.
- 2) Sei $G = (\mathbb{Z}, +)$ und $H = (\mathbb{Z}/3\mathbb{Z}, +)$. Dann ist $\varphi_2 : G \to H, x \mapsto x \mod 3$ ein Gruppenhomomorphismus. Jedoch ist φ_2 nicht injektiv, also sicher kein Homöomorphismus.
- 3) Sei X ein topologischer Raum. Dann ist id $_X$ ein Homöomorphismus. Da keine Verknüpfung auf X definiert wurde, ist X keine Gruppe und daher auch kein Gruppenhomomorphismus.

Also: Obwohl die Begriffe ähnlich klingen, werden sie in ganz unterschiedlichen Kontexten verwendet.

Lösung zu Aufgabe 6

(a) Vor.: Sei M eine topologische Mannigfaltigkeit.

Beh.: M ist wegzusammehängend $\Leftrightarrow M$ ist zusammenhängend

Beweis: " \Rightarrow ": Da M insbesondere ein topologischer Raum ist folgt diese Richtung direkt aus Bemerkung 24.

" \Leftarrow ": Seien $x, y \in M$ und

$$Z := \{ z \in M \mid \exists \text{Weg von } x \text{ nach } z \}$$

Es gilt:

- (i) $Z \neq \emptyset$, da M lokal wegzusammenhängend ist
- (ii) Z ist offen, da M lokal wegzusammenhängend ist
- (iii) $Z^C := \{ \tilde{z} \in M \mid \nexists \text{Weg von } x \text{ nach } \tilde{z} \} \text{ ist offen}$

Da M eine Mannigfaltigkeit ist, existiert zu jedem $\tilde{z} \in Z^C$ eine offene und wegzusammenhängende Umgebung $U_{\tilde{z}} \subseteq M$.

Es gilt sogar $U_{\tilde{z}} \subseteq Z^C$, denn gäbe es ein $U_{\tilde{z}} \ni \overline{z} \in Z$, so gäbe es Wege γ_2 : $[0,1] \to M, \gamma_2(0) = \overline{z}, \gamma_2(1) = x$ und $\gamma_1 : [0,1] \to M, \gamma_1(0) = \tilde{z}, \gamma_1(1) = \overline{z}$. Dann wäre aber

$$\gamma: [0,1] \to M,$$

$$\gamma(x) = \begin{cases} \gamma_1(2x) & \text{falls } 0 \le x \le \frac{1}{2} \\ \gamma_2(2x-1) & \text{falls } \frac{1}{2} < x \le 1 \end{cases}$$

ein stetiger Weg von \tilde{z} nach $x \Rightarrow$ Widerspruch.

Da M zusammenhängend ist und $M = \underbrace{Z}_{\text{offen}} \cup \underbrace{Z^C}_{\text{offen}}$, sowie $Z \neq \emptyset$ folgt $Z^C = \emptyset$.

Also ist M = Z wegzusammenhängend.

(b) Beh.: X ist wegzusammenhängend.

Beweis: $X := (\mathbb{R} \setminus \{0\}) \cup \{0_1, 0_2\}$ und $(\mathbb{R} \setminus \{0\}) \cup \{0_2\}$ sind homöomorph zu \mathbb{R} . Also sind die einzigen kritischen Punkte, die man nicht verbinden könnte 0_1 und 0_2 .

Da $(\mathbb{R} \setminus \{0\}) \cup \{0_1\}$ homöomorph zu \mathbb{R} ist, exisitert ein Weg γ_1 von 0_1 zu einem beliebigen Punkt $a \in \mathbb{R} \setminus \{0\}$.

Da $(\mathbb{R} \setminus \{0\}) \cup \{0_2\}$ ebenfalls homöomorph zu \mathbb{R} ist, existiert außerdem ein Weg γ_2 von a nach 0_2 . Damit existiert ein (nicht einfacher) Weg γ von 0_1 nach 0_2 .

Lösung zu Aufgabe 8

Vor.: Sei (X, d) eine absolute Ebene, $A, B, C \in X$ und $\triangle ABC$ ein Dreieck.

(a) **Beh.:** $\overline{AB} \cong \overline{AC} \Rightarrow \angle ABC \cong \angle ACB$

Bew.: Sei $\overline{AB} \cong \overline{AC}$.

 $\Rightarrow \exists$ Isometrie φ mit $\varphi(B) = C$ und $\varphi(C) = B$ und $\varphi(A) = A$.

$$\Rightarrow \varphi(\angle ABC) = \angle ACB$$

$$\Rightarrow \angle ABC \cong \angle ACB$$

(b) **Beh.:** Der längeren Seite von $\triangle ABC$ liegt der größere Winkel gegenüber und umgekehrt

Bew.: Sei d(A, C) > d(A, B). Nach §3 (i) gibt es $C' \in AC^+$ mit d(A, C') = d(A, B) $\Rightarrow C'$ liegt zwischen A und C.

Es gilt $\angle ABC' < \angle ABC$ und aus Aufgabe 8 (a) folgt: $\angle ABC' = \angle AC'B$.

 $\angle BC'A$ ist ein nicht anliegender Außenwinkel zu $\angle BCA \xrightarrow{\text{Bem. 66}} \angle BC'A > \angle BCA$ $\Rightarrow \angle BCA < \angle BC'A = \angle ABC' < \angle ABC$ Sei umgekehrt $\angle ABC > \angle BCA$, kann wegen 1. Teil von Aufgabe 8 (b) nicht d(A, B) > d(A, C) gelten.

Wegen Aufgabe 8 (a) kann nicht d(A, B) = d(A, C) gelten. $\Rightarrow d(A,B) < d(A,C)$

(c) Vor.: Sei g eine Gerade, $P \in X$ und $P \notin g$

Beh.: \exists ! Lot

Bew.: ÜB10 A4(a): Es gibt Geradenspiegelung φ an g. φ vertauscht die beiden Halbebenen bzgl. q.

 $\Rightarrow \varphi(P)P$ schneidet g in F.

Es gibt eine Geradenspiegelung φ an q. φ vertauscht die beiden Halbebenen bzgl. q $\Rightarrow \varphi(P)P$ schneidet g in F.

Sei $A \in g \setminus \{F\}$. Dann gilt $\varphi(\angle AFP) = \angle AF\varphi(P) = \pi \Rightarrow \angle AFP$ ist rechter Winkel.

Gäbe es nun $G \in g \setminus \{F\}$, so dass PG weiteres Lot von P auf g ist, ware $\triangle PFG$ ein Dreieck mit zwei rechten Innenwinkeln (vgl. Abbildung 5.4).

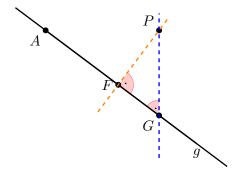


Abbildung 5.4: Zwei Lote zu einer Geraden g durch einen Punkt P

Nach Folgerung 4.4 ist die Summe von zwei Innenwinkeln immer $< \pi$ $\Rightarrow G$ gibt es nicht.

Lösung zu Aufgabe 9

Sei $f \parallel h$ und o. B. d. A. $f \parallel g$.

 $f \not\parallel h \Rightarrow f \cap h \neq \emptyset$, sei also $x \in f \cap h$. Mit Axiom §5 folgt: Es gibt höchstens eine Parallele zu g durch x, da $x \notin g$. Diese ist f, da $x \in f$ und $f \parallel g$. Da aber $x \in h$, kann h nicht parallel zu g sein, denn ansonsten gäbe es zwei Parallelen zu g durch x $(f \neq h)$. $\Rightarrow g \nmid h \blacksquare$

Lösung zu Aufgabe 10

Seien $\triangle ABC$ und $\triangle AB'C'$ Dreiecke mit

$$d(A,B) = d(A',B')$$

$$d(B,C) = d(B',C')$$

$$d(C, A) = d(C', A')$$

Dann existiert nach §4 genau eine Isometrie φ mit $\varphi(A)=A', \varphi(B)=B'$ und $\varphi(C)\in A'B'C'^+.$

Da
$$d(A',C')=d(A,C)=d(\varphi(A),\varphi(C))=d(A',\varphi(C))$$
 und $d(B',C')=d(B',\varphi(C))$

Da fehlt was.

Bildquellen

Alle Bilder, die hier nicht aufgeführt sind, wurden selbst erstellt.

Teilweise wurden die im folgenden aufgelisteten Bilder noch leicht modifiziert.

- Abb. 0.1a S^2 : Tom Bombadil, tex.stackexchange.com/a/42865
- Abb. 0.1b Würfel: Jan Hlavacek, tex.stackexchange.com/a/12069
- Abb. 0.1e T^2 : Jake, tex.stackexchange.com/a/70979/5645
- Abb. 1.6 Stereographische Projektion: texample.net/tikz/examples/map-projections
- Abb. 1.11 Knoten von Jim.belk aus der "Blue knots"-Serie:
 - Trivialer Knoten: commons.wikimedia.org/wiki/File:Blue_Unknot.png
 - Kleeblattknoten: commons.wikimedia.org/wiki/File:Blue_Trefoil_Knot.png
 - Achterknoten: commons.wikimedia.org/wiki/File:Blue_Figure-Eight_Knot.png
 - 62-Knoten: commons.wikimedia.org/wiki/File:Blue_6_2_Knot.png
- Abb. 1.12 Reidemeister-Züge: YAMASHITA Makoto (1, 2, 3)
- Abb. 1.13 Kleeblattknoten, 3-Färbung: Jim.belk, commons.wikimedia.org/wiki/File:Tricoloring.png
- Abb. 2.1 Doppeltorus: Oleg Alexandrov, commons.wikimedia.org/wiki/File:Double_torus_illustration
- Abb. 2.8 Faltungsdiagramm: Jérôme Urhausen, Email vom 11.02.2014.
- Abb. 3.3b 3 Pfade auf Torus: Charles Staats, tex.stackexchange.com/a/149991/5645
- Abb. 3.10 Überlagerung von S^1 mit \mathbb{R} : Alex, tex.stackexchange.com/a/149706/5645
- Abb. 4.7a Sphärisches Dreieck: Dominique Toussaint, commons.wikimedia.org/wiki/File:Spherical_triangle_3d_opti.png
- Abb. 5.1 Möbiusband: Jake, tex.stackexchange.com/a/118573/5645

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

Def. Definition

etc. et cetera

o. B. d. A. ohne Beschränkung der Allgemeinheit

Prop. Proposition

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

zhgd. zusammenhängend

z. z. zu zeigen

Anhang: Definitionen und Sätze

Da dieses Skript in die Geometrie und Topologie einführen soll, sollten soweit wie möglich alle benötigten Begriffe definiert und erklärt werden. Die folgenden Begriffe wurden zwar verwendet, aber nicht erklärt, da sie Bestandteil der Vorlesungen "Analysis I und II" sowie "Lineare Algebra und analytische Geometrie I und II" sind. Jedoch will ich zumindest die Definitionen bereitstellen.

Definition 76

Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 heißt ein **Häufungspunkt** von $D : \Leftrightarrow \exists$ Folge x_n in $D \setminus \{x_0\}$ mit $x_n \to x_0$.

Folgende Definition wurde dem Skript von Herrn Prof. Dr. Leuzinger für Lineare Algebra entnommen:

Definition 77

Es seien V und W \mathbb{K} -Vektorräume und $\mathbb{A}(V)$ und $\mathbb{A}(W)$ die zugehörigen affinen Räume. Eine Abbildung $f:V\to W$ heißt **affin**, falls für alle $a,b\in V$ und alle $\lambda,\mu\in\mathbb{K}$ mit $\lambda+\mu=1$ gilt:

$$f(\lambda a + \mu b) = \lambda f(a) + \mu f(b)$$

Definition 78

Sei V ein Vektorraum und $S \subseteq V$ eine Teilmenge.

S heißt eine **Orthonormalbasis** von V, wenn gilt:

- (i) S ist eine Basis von V
- (ii) $\forall v \in S : ||v|| = 1$
- (iii) $\forall v_1, v_2 \in S : v_1 \neq v_2 \Rightarrow \langle v_1, v_2 \rangle = 0$

Satz (Zwischenwertsatz)

Sei a < b und $f \in C[a,b] := C([a,b])$, weiter sei $y_0 \in \mathbb{R}$ und $f(a) < y_0 < f(b)$ oder $f(b) < y_0 < f(a)$. Dann existiert ein $x_0 \in [a,b]$ mit $f(x_0) = y_0$.

Symbolverzeichnis

Mengenoperationen

 ${\cal A}^C$ Komplement der Menge ${\cal A}$

 $\mathcal{P}(M)$ Potenzmenge von M

 \overline{M} Abschluss der Menge M

 ∂M Rand der Menge M

 M° Inneres der Menge M

 $A \times B$ Kreuzprodukt zweier Mengen

 $A \subseteq B$ Teilmengenbeziehung

 $A \subsetneq B$ echte Teilmengenbeziehung

 $A \setminus B$ A ohne B

 $A \cup B$ Vereinigung

 $A \dot{\cup} B$ Disjunkte Vereinigung

 $A \cap B$ Schnitt

Geometrie

 $\begin{array}{ll} \underline{AB} & \text{Gerade durch die Punkte } A \text{ und } B \\ \overline{AB} & \text{Strecke mit Endpunkten } A \text{ und } B \\ \triangle ABC & \text{Dreieck mit Eckpunkten } A, B, C \end{array}$

|K| Geometrische Realisierung des Simplizialkomplexes K

Gruppen

 $\operatorname{Hom\"{o}o}(X) \quad \operatorname{Hom\"{o}omorphismengruppe}$

Iso(X) Isometriengruppe

 $GL_n(K)$ Allgemeine lineare Gruppe²

 $SL_n(K)$ Spezielle lineare Gruppe

 $\operatorname{PSL}_n(K)$ Projektive lineare Gruppe

Perm(X) Permutationsgruppe

Sym(X) Symmetrische Gruppe

Wege

$$\begin{split} & [\gamma] \quad \text{Homotopieklasse eines Weges } \gamma \\ & \gamma_1 * \gamma_2 \quad \text{Zusammenhängen von Wegen} \\ & \gamma_1 \sim \gamma_2 \quad \text{Homotopie von Wegen} \\ & \overline{\gamma}(x) = \gamma(1-x) \quad \text{Inverser Weg} \\ & C := \gamma([0,1]) \quad \text{Bild eines Weges } \gamma \end{split}$$

Weiteres

Basis einer Topologie

 \mathcal{S} Subbasis einer Topologie

 $\mathfrak{B}_{\delta}(x)$ δ -Kugel um x

 \mathfrak{T} Topologie

 \mathcal{A} Atlas

 \mathcal{P} Projektiver Raum

 $\langle \cdot, \cdot \rangle$ Skalar
produkt

 $X/_{\sim}$ X modulo \sim

 $[x]_{\sim}$ Äquivalenzklassen von x bzgl. \sim

||x|| Norm von x

|x| Betrag von x

 $\langle a \rangle$ Erzeugnis von a

 S^n Sphäre

 T^n Torus

 $f \circ g$ Verkettung von f und g

 π_X Projektion auf X

 $f|_{U}$ f eingeschränkt auf U

 $f^{-1}(M)$ Urbild von M

Rg(M) Rang von M

 $\chi(K)$ Euler-Charakteristik von K

 Δ^k Standard-Simplex

X # Y Verklebung von X und Y

 d_n Lineare Abbildung aus Bemerkung 38

 $A \cong B$ A ist isometrisch zu B

²von General Linear Group

104 Symbolverzeichnis

Zahlenmengen

```
\mathbb{N} = \{\, 1, 2, 3, \dots \,\} Natürliche Zahlen
\mathbb{Z} = \mathbb{N} \cup \{\ 0, -1, -2, \dots\} Ganze Zahlen
\mathbb{Q} = \mathbb{Z} \cup \left\{ \frac{1}{2}, \frac{1}{3}, \frac{2}{3} \right\} = \left\{ \frac{z}{n} \text{ mit } z \in \mathbb{Z} \text{ und } n \in \mathbb{Z} \setminus \{0\} \right\} Rationale Zahlen
\mathbb{R} = \mathbb{Q} \cup \{\sqrt{2}, -\sqrt[3]{3}, \dots\} Reele Zahlen
\mathbb{R}^+ Echt positive reele Zahlen
\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\} Einheitengruppe von \mathbb{R}
\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{R} \} \quad \text{Komplexe Zahlen}
\mathbb{P} = \{2, 3, 5, 7, \dots\} Primzahlen
\mathbb{H} = \{ z \in \mathbb{C} \mid \Im z > 0 \} \quad \text{obere Halbebene}
I = [0, 1] \subseteq \mathbb{R} Einheitsintervall
f: S^1 \hookrightarrow \mathbb{R}^2 Einbettung der Kreislinie in die Ebene
\pi_1(X,x) Fundamentalgruppe im topologischen Raum X um x \in X
Fix(f) Menge der Fixpunkte der Abbildung f
\|\cdot\|_2 2-Norm; Euklidische Norm
\kappa Krümmung

\kappa_{\text{Nor}} V(f)
 Nullstellenmenge von f^3
```

³von Vanishing Set

Stichwortverzeichnis

Abbildung	Einheitsnormalenfeld, 86
affine, 102	Euler-Charakteristik, siehe Eulerzahl
differenzierbare, 29	Eulersche Polyederformel, 38
homotope, 49	Eulerzahl, <mark>36</mark>
offene, 51	
simpliziale, 35	Färbbarkeit, 21
stetige, 9	Faser, siehe Urbild
Abschluss, 4	Fläche
Abstand, 83	orientierbare, 86
Abstandsaxiom, 64	reguläre, 30
Achterknoten, 20	Flächenelement, 90
Aktion, siehe Gruppenoperation	Fundamentalform
Anordnungsaxiome, 65	erste, 90
Atlas, 24	zweite, 92
Außenwinkel, 69	Fundamental gruppe, 46
Axiom, 63	Gauß-Krümmung, 89
Axiomensystem, 63	Geometrie, 63
D : 4	Gerade, 63
Basis, 4	hyperbolische, 75
Baum, 37	Graph, 37
Betti-Zahl, 40	Grenzwert, 9
Bewegungsaxiom, 65	Gruppe
Binormalenvektor, 85	allgemeine lineare, 22, 26
Cantorsches Diskontinuum, 22	spezielle lineare, 22
Cantorsches Diskontinuum, 22 C^k -Struktur, 29	topologische, 33
C -Struktur, 20	Gruppe operiert durch Homöomorphismen.
Decktransformation, 58	60
reguläre, 58	Gruppenaktion, siehe Gruppenoperation
Decktransformationsgruppe, 58	Gruppenoperation, 60, 60–62
Deformationsretrakt, 46	stetige, 60
dicht, 4	0 /
Diffeomorphismus, 29	Häufungspunkt, 102
Dimension, 34	Hülle
diskret, 52	konvexe, 34
Doppelverhältnis, 80	Halbebene, 65
Dreibein	Halbgerade, 64
begreitendes, 85	Halbraum, 28
	Hauptkrümmung, 89
Ebene	Hilbert-Kurve, 18, 19
euklidische, 63	Homöomorphismengruppe, 10
einfach zusammenhängend, 48	Homöomorphismus, 9

106 Stichwortverzeichnis

Homologiegruppe, 40	Menge
Homomorphismus, 96	abgeschlossene, 3
Homotopie, 43	offene, 3
Homotopieklasse, 46	Metrik, 7
Inklusionsabbildung, 46	diskrete, 7
Innenwinkel, 69	hyperbolische, 81
Inneres, 4	SNCF, 8
	Nobonwinkal 82
Inzidenzaxiome, 63	Nebenwinkel, 83
Isometrie, 7, 11	Neilsche Parabel, 27
Isometriegruppe, 11	Normalenfeld, 86
Isotopie, 20	Normalenvektor, 84, 85
Jordankurve, 19	Normalkrümmung, 87, 88, 92
geschlossene, 19	Oktaeder, 34
,	Orthonormalbasis, 102
Karte, 24	
Kartenwechsel, 28	Paraboloid
Kern	hyperbolisches, 88
offener, 4	Parallele, 65
Kleeblattknoten, 20	Parallelenaxiom, 63
Klumpentopologie, siehe triviale Topologie	parametrisiert
Knoten, 20, 18–21	durch Bogenlänge, 84
äquivalente, 20	Parametrisierung
trivialer, 20	<u> </u>
Knotendiagramm, 20	reguläre, 30
	Polyzylinder, 17
kollinear, 64	Produkttopologie, 5
kongruent, siehe isometrisch	Projektion
Kongruenz, siehe Isometrie	stereographische, 11
Krümmung, 84, 85	Punkt, 34
Kreis, 37	
Kurve	Quotiententopologie, 6, 11, 11
Länge einer, 84	D J 4 90
T	Rand, 4, 28
Lage	Raum
allgemeine, 34	hausdorffscher, 8
Lie-Gruppe, 33	kompakter, 14
liegt zwischen, 64	metrischer, 7
Liftung, 53	projektiver, 6 , 22 , 25 , 51
Limes, 9	topologischer, 3
lokal, 4	Realisierung
Lot, 83	geometrische, 34
Lotfußpunkt, 83	Retraktion, 46
Möbiusband, 87	Satz von
Möbiustransformation, 77	Gauß-Bonnet, 93
Mannigfaltigkeit, 24	Scheitelwinkel, 83
differenzierbare, 29	Seite, 34
	•
geschlossene, 25	Sierpińskiraum, 4, 22
glatte, 29	Simplex, 34
mit Rand, 28	Simplizialkomplex, 34

107 Stichwortverzeichnis

Simplizialkomplexe
flächengleiche, 73
Sphäre
exotische, 29
Standard-Simplex, 34
Standardtopologie, 3
sternförmig, 47
Stetigkeit, 9–11
Strecke, 64
Struktur
differenzierbare, 29
Subbasis, 4
Tangentialebene, 86
Teilraum, 5
Teilraumtopologie, 5
Teilsimplex, 34
Topologie
diskrete, $3, 7$
euklidische, 3
feinste, 11
triviale, 3
Zariski, 3, 13, 15
Torus, iii, 6, 50, 89
Total Unzusammenhängend, 95
Überdeckung, 14
Übergangsfunktion, siehe Kartenwechsel
Überlagerung, 50, 50–60
universelle, 56
Umgebung, 4
vanishing set, 26
Verklebung, 26
verträglich, 29
Würfel, <mark>34</mark>
Weg, 18
einfacher, 18
geschlossener, 18
homotope, 43
inverser, 47
zusammengesetzter, 45
Wegzusammenhang, 18
Winkel, 68
zusammenhängend, 12
Zusammenhang, 12–14
Zusammenhangskomponente, 13
Zwischenwertsatz, 102