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Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 geschrieben. Es beinhaltet Vorlesungs-
notizen von Studenten zur Vorlesung von Prof. Dr. Herrlich.

Es darf jeder gerne Verbesserungen einbringen!
Die Kurz-URL des Projekts lautet tinyurl.com/GeoTopo.

An dieser Stelle méchte ich noch Herrn Prof. Dr. Herrlich fiir einige Korrekturvorschlage und
einen gut strukturierten Tafelanschrieb danken, der als Vorlage fiir dieses Skript diente. Vielen
Dank auch an Frau Lenz und Frau Randecker, die es mir erlaubt haben, ihre Ubungsaufgaben
und Losungen zu benutzen.

Was ist Topologie?

Die Kugeloberfliche S? lisst sich durch strecken, stauchen und umformen zur Wiirfeloberfliiche
oder der Oberfliche einer Pyramide verformen, aber nicht zum R? oder zu einem Torus T2. Fiir
den R? miisste man die Oberfliiche unendlich ausdehnen und fiir einen Torus miisste man ein

Loch machen.
(a) 5

(b) Wiirfel (c) Pyramide

)

(d) R?

Abbildung 0.1: Beispiele fiir verschiedene Formen

Erforderliche Vorkenntnisse

Es wird ein sicherer Umgang mit den Quantoren (V, 3), Mengenschreibweisen (U, N, \, 0, R, P(M))
und ganz allgemein formaler Schreibweise vorausgesetzt. Diese Vorkenntnisse werden vor allem
in ,,Analysis I vermittelt.
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Aufserdem wird vorausgesetzt, dass das Konzept der linearen Unabhéngigkeit und und der
projektive Raum P(R) aus ,Lineare Algebra I bekannt sind.
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1 Topologische Grundbegriffe

1.1 Topologische Raume

Definition 1
Ein topologischer Raum ist ein Paar (X, T) bestehend aus einer Menge X und ¥ C P(X)
mit folgenden Eigenschaften

i) 0, X e%
(ii) Sind U1,Us € T, s0ist Uy NUz € T

(iii) Ist I eine Menge und U; € ¥ fiir jedes i € I, so ist U U e®
el
Die Elemente von ¥ heiffen offene Teilmengen von X.

A C X heifst abgeschlossen, wenn X \ A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Bemerkung 1 (Mengen, die offen und abgeschlossen sind, existieren)
Betrachte ) und X mit der ,trivialen Topologie“ Ty, = {0, X }.

Es gilt: X € Tund § € T, d. h. X und 0§ sind offen. Auferdem X¢ = X\ X =0 € T und
X\0=Xe% d h X und 0 sind als Komplement offener Mengen abgeschlossen. ]

Beispiel 1
1) X = R"™ mit der euklidischen Metrik.

U C R" offen < fiir jedes z € U gibt es r > 0,
sodass B,(z) ={y e R" |d(z,y) <r} CU

Also: ¥ ={ M C X | M ist offene Kugel }. Diese Topologie wird auch ,Standardtopo-

ne

logie des R™ genannt.

2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.
3) Fiir eine Menge X heifit T = P(X) ,diskrete Topologie“.

4) X =R, Tz:={U CR|R\U endlich } U{ 0} heifit ,Zariski-Topologie*
Beobachtungen:

o Uc%Ty < df e RIX],sodass R\U=V(f)={zeR| f(x)=0}
e Es gibt keine disjunkten offenen Mengen in Tz.

5) X :=R", Tz ={U C R"|Es gibt Polynome fi,..., f, € R[Xq,...,X,] sodass
R*"\U =V (f1,..., fr)}
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6) X :={0,1},T={0,{0,1},{0}} heit ,Sierpinskiraum*.
0,{0,1},{1} sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X, %) ein topologischer Raum und z € X.

Eine Teilmenge U C X heifst Umgebung von x, wenn es ein Uy € ¥ gibt mit « € Uy und
Uy CU.

Definition 3
Sei (X, T) ein topologischer Raum und M C X eine Teilmenge.

a) M° := {x e M| M ist Ungebung von x } = U U heifit Inneres oder offener

UCM
Ue%
Kern von M.
b) M := ﬂ A heift abgeschlossene Hiille oder Abschluss von M.

MCA
A abgeschlossen

c) OM := M \ M° heikt Rand von M.

d) M heift dicht in X, wenn M = X ist.
Beispiel 2 o
1) Sei X = R mit euklidischer Topologie und M = Q. Dann gilt: M = R und M° = ()
2) Sei X =R und M = (a,b). Dann gilt: M = [a, b]
3) Sei X =R, T =%z und M = (a,b). Dann gilt: M =R

Definition 4
Sei (X, T) ein topologischer Raum.

a) B C T heillt Basis der Topologie T, wenn jedes U € T Vereinigung von Elementen
aus ‘B ist.

b) B C T heifit Subbasis, wenn jedes U € T Vereinigung von endlich vielen Durchschnit-
ten von Elementen aus B ist.

Beispiel 3
Gegeben sei X = R™ mit euklidischer Topologie ¥. Dann ist

B={B(r)|re€Qs0,2zcQ"}

ist eine abzahlbare Basis von ¥.

Bemerkung 2
Sei X eine Menge und B C P(X). Dann gibt es genau eine Topologie T auf X, fir die B
Subbasis ist.

Definition 5
Sei (X, T) ein topologischer Raum und Y C X.
Ty ={UNY |U € T} ist eine Topologie auf Y.

%y heift Spurtopologie und (Y, Ty) heifst ein Teilraum von (X, T)
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Definition 6
Seien X7, Xa topologische Rdume.
U C X; X Xo sei offen, wenn es zu jedem z = (z1,22) € U Umgebungen U; um x; mit
1= 1,2 gibt, sodass Uy x Uy C U gilt.

T ={U C X1 x Xa | U offen } ist eine Topologie auf X; x Xs. Sie heift Produkttopologie.
B ={U; xUy| U, offen in X;,i = 1,2} ist eine Basis von ¥.

Xo

U2 T )

X1

Abbildung 1.1: Zu x = (1, z2) gibt es Umgebungen Uy, Uy mit Uy x Us C U

Beispiel 4
1) X7 = X9 = R mit euklidischer Topologie.
= Die Produkttopologie auf R x R = R? stimmt mit der euklidischen Topologie auf
R? iiberein.

2) X1 = X3 = R mit Zariski-Topologie. T Produkttopologie auf R?: U; x Us
(Siehe Abbildung 1.2)

N\ =2

Uy =R\N
Abbildung 1.2: Zariski-Topologie auf R?

Definition 7
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ sei die Menge
der Aquivalenzklassen, 7:x — Z, z+ [z]~.

TY::{UQY‘W_I(U)ES)(}
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X, T+) heikt Quotiententopologie.
X

Beispiel 5
X=Ra~b:sa—-beZl
(- -.aq
10 1 2 3,4 »5R
Ao
URRREEEEE
0

0~1,d h[0] =[]

Beispiel 6
Sei X = R? und (x1,91) ~ (22,%2) © 71 — 22 € Z und y; — y2 € Z. Dann ist X/ ein Torus.
Beispiel 7
X=R"'\ {0}, 2~y INcR  mity =\
< x und y liegen auf der gleichen
Ursprungsgerade
X = P"(R)
Also fiir n = 1:
4 1
2 41
4 2 2 4 6 8
[ 9|
4|

1.2 Metrische Raume

Definition 8
Sei X eine Menge. Eine Abbildung d : X x X — ]Rar heiftit Metrik, wenn gilt:

(i) Definitheit: dlz,y)=0=z=y Vr,ye X
(ii) Symmetrie: d(z,y) =d(y,z) Ve,ye X
(iii) Dreiecksungleichung: d(z,z) < d(z,y) +d(y,z) Vz,y,z € X
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Das Paar (X, d) heifst ein metrischer Raum.

Bemerkung 3
Sei (X, d) ein metrischer Raum und

B.(r):={ycX|dxy) <r} firre X,rcR"

B ist Basis einer Topologie auf X.

Beispiel 8
Sei V' ein euklidischer oder hermiteischer Vektorraum mit Skalarprodukt (-, -). Dann wird V'

durch d(z,y) := v/(z — y,x — y) zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heifst

d(z,y) 0 fallsz=y
x,y) =
Y 1 fallsz #vy

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.

Beispiel 10
X =R? und d ((z1,1), (v2,92)) := max(||z1 — z2||, |y1 — o) ist Metrik.

Beobachtung: d erzeugt die euklidische Topologie.

(a) B,(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 11 (SNCF-Metrik!)
X =R?
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Definition 9
Ein topologischer Raum X heifst hausdorffsch, wenn es fiir je zwei Punkte x # y in X
Umgebungen U, um z und Uy um y gibt, sodass U, N U, = 0.

Bemerkung 4 (Trennungseigenschaft)
Metrische Rdume sind hausdorffsch, da

d(z,y) >0=3e>0:B. () N DB:(y) =0

Ein Beispiel fiir einen topologischen Raum, der nicht hausdorffsch ist, ist (R, T z).

Bemerkung 5
Seien X, X7, X9 Hausdorff-Rdume.

a) Jeder Teilraum um X ist Hausdorffsch.

b) X1 x Xs ist Hausdorffsch.

»

SISIIIS SIS SIS 777777

FAS S X S S S S S S S S
7z

S S S
S S S

ST

layl) "2792)

//////////{?/////////

77777777
A

X1

) //////////é§

1
Ui x X5 Us x Xo

8

Abbildung 1.4: Wenn X1, X5 hausdorffsch sind, dann auch X; x Xo

Definition 10
Sei X ein topologischer Raum und (z),en eine Folge in X. z € X heifit Grenzwert oder
Limes von (x,), wenn es fiir jede Umgebung U von z ein ng gibt, sodass xz,, € U fiir alle
n > ng.

Bemerkung 6
Ist X hausdorffsch, so hat jede Folge in X hdochstens einen Grenzwert.
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Beweis: Sei (x,) eine konvergierende Folge und x und y Grenzwerte der Folge.

Nach Voraussetzung gibt es Umgebungen U, von z und U, von y mit U, N U, = 0. Es
existiert ein ng mit =, € U, NU, fiir allen >ng =z =y [ |

1.3 Stetigkeit

Definition 11
Seien XY topologische Rdume und f : X — Y eine Abbildung,.

a) f heifit stetig, wenn fiir jedes offene U C Y auch f~!(U) C X offen ist.

b) f heift Homéomorphismus, wenn f stetig ist und es eine stetige Abbildung g :
Y — X gibt, sodass go f =idx und fog =idy.

Bemerkung 72
Seien X, Y metrische Rdume und f: X — Y eine Abbildung.

Dann gilt: f ist stetig < zu jedem x € X und jedem & > 0 gibt es §(z, &) > 0, sodass fiir
alle y € X mit d(z,y) < 0 gilt dy (f(x), f(y)) <e.

Beweis: ,,=“ Sei z € X, > 0 gegeben und U := B.(f(x)).
Dann ist U offen in Y.
Def Ly f7HU) ist offen in X. Dann ist x € f~1(U).
= 36 > 0, sodass Bs(z) C f~HU)
= [(Bs(x)) €U
={yeX|dx(z,y) <J}= Beh.

,<“ Sei U CY offen, X € f~1(U).

Dann gibt es € > 0, sodass B.(f(x)) CU
Yor, g gibt § > 0, sodass f(’Bg( ) € B(f(x)))
= Bs(z) € f7H(Be(f(2)) € F7HU) n

Bemerkung 8
Eine Ableitung f : X — Y von topologischen Rdumen ist genau dann stetig, wenn fiir jede
abgeschlossene Teilmenge A C Y gilt: f~!(A) C X ist abgeschlossen.

Beispiel 12
1) Fiir jeden topologischen Raum X gilt: idx : X — X ist Homdomorphismus.

2) Ist Y trivialer topologischer Raum, d. h. ¥ = %4y, so ist jede Abbildung f: X — Y
stetig.

3) Ist X diskreter topologischer Raum, so ist f: X — Y stetig fiir jeden topologischen
Raum Y und jede Abbildung f.

4) Sei X =[0,1),Y =St ={z€C||z]| =1} und f(t) = e*™ Die Umkehrabbildung g
ist nicht stetig, da g=!(U) nicht offen ist (vgl. Abbildung 1.5).

Bemerkung 9 (Verkettungen stetiger Abbildungen sind stetig)
Seien X, Y, Z topologische Raume, f: X — Y und g : Y — Z stetige Abbildungen.

2Im Grunde wird die Aquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Rdumen
gezeigt.
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S
R
——t— 0
0 1R

Abbildung 1.5: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht stetig ist.

Dann ist go f : X — Z stetig.
X

N

of
VA

Beweis: Sei U C Z offen = (go f)~Y(U) = f~Y(g71(U)). g1 (U) ist offen in Y weil g stetig
ist, f~1(g71(U)) ist offen in X, weil f stetig ist. [ |

Bemerkung 10
a) Fiir jeden topologischen Raum ist Homéo(X) := { f : X — X | f ist Hom6omorphismus }

eine Gruppe.
b) Jede Isometrie f : X — Y zwischen metrischen Riumen ist ein Hom6éomorphismus.

c) Iso(X) := {f: X — X | f ist Isometrie } ist eine Untergruppe von Homoo(X) fiir
jeden metrischen Raum X.

Bemerkung 11
Seien X, Y topologische Rdume. mx : X XY — X und 7y : X x Y — Y die Projektionen

wx : (z,y) = zund 7y : (z,y) =y

Wird X x Y mit der Produkttopologie versehen, so sind mx und 7y stetig.

Beweis: Sei U C X offen = 7, 1(U) = U x Y ist offen in X x Y. [

Bemerkung 12
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ der Bahnenraum
versehen mit der Quotiententopologie, 7 : X — X, z > [7]~.

Dann ist 7 stetig.

Beweis: Nach Definition ist U C X offen < 7~1(U) C X offen. ]

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass 7 stetig wird.

Beispiel 13 (Stereographische Projektion)
R™ und S™ \ { N } sind homéomorph fiir beliebiges N € S™. Es gilt:

S"={zeR"™ ||z =1}

n+1
:{xGR”Jrl Zx?}
=1
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O.B.d. A.sei N = | : |. Die Gerade durch N und P schneidet die Ebene H in genau
1
einem Punkt P. P wird auf P abgebildet.

FiST\{N} R
genau ein Punkt

——
P— LpNH

X1
wobei R* = H = : e R"! | 2,,1 =0 3 und Lp die Gerade in R"*! durch N

Tn+1
und P ist.

Abbildung 1.6: Visualisierung der stereographischen Projektion

T
Sei P = : , S0 ist xp41 < 1, also ist Lp nicht parallel zu H. Also schneiden sich Lp
Tn+1

und H in genau einem Punkt p.

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.



1.4. ZUSAMMENHANG 11

1.4 Zusammenhang

Definition 12
Ein Raum X heifst zusammenhingend, wenn es keine offenen, nichtleeren Teilmengen
U1,Us von X gibt mit U; NUs = Pund U1 U, = X.

Bemerkung 13
X ist zusammenhéngend < Es gibt keine abgeschlossenen, nichtleeren Teilmengen Aj, As
mit Ay N Ay =0 und 41 U Ay = X.

Bemerkung 14

Eine Teilmenge Y C X heifst zusammenhéngend, wenn Y als topologischer Raum mit der
Teilraumtopologie zusammenhéngend ist.

Beispiel 14 (Zusammenhang von Riumen)
1) R™ ist mit der euklidischen Topologie zusammenhéngend, denn:

Annahme: R" = Uy U Uy mit U; offen, U; # () und Uy N Us = () existieren.

Sei z € U,y € Uy und [z,y] die Strecke zwischen x und y. Dann ist Uy N [z, y] die
Vereinigung von offenen Intervallen. Dann gibt es z € [z, y] mit z € 9(U; N[z, y]), aber
z ¢ Uy = z € Us. In jeder Umgebung von z liegt ein Punkt von U; = Widerspruch
zu Uy offen.

2) R\ {0} ist nicht zusammenhéngend, denn R\ { 0 } = Ro UR>g

)

3) R?2\ {0} ist zusammenhingend.

4) Q € R ist nicht zusammenhéngend, da (QNR_ 5)U(QNR, 5)=Q
)

5) { z } ist zusammenhéngend fiir jedes = € X, wobei X ein topologischer Raum ist.

6) R mit Zariski-Topologie ist zusammenh&angend

Bemerkung 15
Sei X ein topologischer Raum und A C X zusammenhingend. Dann ist auch A zusammen-
hangend.

Beweis: Annahme: A = A; U Ay, A; abgeschlossen, # (), A; N Ay =10

=A= (ANA;) U (AN Ay)
N—_——

abgeschlossen  abgeschlossen

disjunkt
Wire ANA; =0
= A C Ay
= Z - A2
= A = 0
= Widerspruch zu A; # ()
= AN A; # () und analog AN Ay # 0
= Widerspruch zu A ist zusammenhéngend ]

Bemerkung 16
Sei X ein topologischer Raum und A, B C X zusammenhéngend.

Ist AN B # (), dann ist AU B zusammenhéngend.
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Beweis: Sei AU B = Uy UUs, U; # 0 offen, disjunkt

2SR A= (ANUL) U (ANT) offen, disjunkt

A zhgd. AﬂUlzw

ANB#£) U, CB

B = (BNU)U(BNU,) ist unerlaubte Zerlegung
—_—— ~——

=U; =0

Definition 13
Sei X ein topologischer Raum.

Fir z € X sei

Z(z) = U A
AC Xzhgd.
XeA

Z(x) heift Zusammenhangskomponente.

Bemerkung 17
Sei X ein topologischer Raum. Dann gilt:

a) Z(X) ist die grofte zusammenhéngende Teilmenge von X, die = enthélt.
b) Z(X) ist abgeschlossen.
¢) X ist disjunkte Vereinigung von Zusammenhangskomponenten.
Beweis:
a) Sei Z(x) = A1 U Ay mit A; # () abgeschlossen, disjunkt.

O.B.d. A.sei z € A; und y € As. y liegt in einer zusammehéngenden Teilmenge A,
die auch x enthélt. == A = (AN A1) U (AN Az) ist unerlaubte Zerlegung.
—_———— ~——

o> =4

b) Nach Bemerkung 15 ist Z(x) zusammenhéngend = Z(z) C Z(z) = Z(x) = Z(x)

c) Ist Z(y)NZ(x) #0 Born. 1 Z(y) U Z(x) ist zusammenhéngend.

Bemerkung 18
Sei f: X — Y stetig. Ist A C X zusammenhéngend, so ist f(A4) C y zusammenhéngend.

Beweis: Sei f(A) = Uy UU,, U; # 0, offen, disjunkt.
= fH(f(A) = fFHU) U fFH(D)
= A= (AN (U)UAN fHU)) u
20 20
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1.5 Kompaktheit

Definition 14
Sei X eine Menge und 7' C P(X).

T heift eine Uberdeckung von X, wenn gilt:

VeeX:AMeT :ze M

Definition 15
Ein topologischer Raum X heift kompakt, wenn jede offene Uberdeckung £ von X eine
endliche Teiliiberdeckung besitzt.

U={U}ie;, Uioffenin X, | JU;=X
i€l

Bemerkung 19
I =10,1] ist kompakt beziiglich der euklidischen Topologie.

Beweis: Sei (U;);c eine offene Uberdeckung von I.

z. 7.: Es gibt ein § > 0, sodass jedes Teilintervall der Lénge ¢ von I in einem der U; enthalten
ist.

Angenommen, es gibt kein solches . Dann gibt es fiir jedes n € N ein Intervall I,, C [0, 1]
der Lénge 1/n sodass I,, € U; fiir alle i € I.

Sei x,, der Mittelpunkt von I,,. Die Folge (z,) hat einen Haufungspunkt z € [0, 1]. Dann
gibt es ¢ € I mit = € U;. Da Uj; offen ist, gibt es ein € > 0, sodass (z —e,x + &) C U;. Dann
gibt es n mit 1/n < ¢/2 und |z — x| < ¢/2, also I, C (x — e,z +¢) CUj;

= Widerspruch

Dann iiberdecke [0, 1] mit endlich vielen Intervallen Iy,...,I; der Lénge 6. Jedes I; ist in
Ui; enthalten.

= Uj,,...,Uj, ist endliche Teiliiberdeckung von U |

Beispiel 15
1) R ist nicht kompakt.

2) (0,1) ist nicht kompakt.
Un = (1/n, 1-— 1/n) = UnENU = (0, 1)

3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Bemerkung 20
Sei X kompakter Raum, A C X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (V;);er offene Uberdeckung von A.
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Dann gibt es fiir jedes i € I eine offene Teilmenge U; C X mit V; = U; N A.

i€l
=U={U;|iel}u{X\ A} ist offene Uberdeckung von X

n
X kompaky es gibt i1,...,i, € I, sodass UUijU(X\A):X

Jj=1

= (JU,ux\4)|na=4
j=1

= @, na o 0y - 4
j=lT \—:/@—/

=V;.

J

= Vi,,...,V;, iiberdecken A

Bemerkung 21
Seien X,Y kompakte topologische Rdume. Dann ist X x Y mit der Produkttopologie
kompakt.

Beweis: Sei (W;);cs eine offene Uberdeckung von X x Y. Fiir jedes (z,y) € X x Y gibt es
offene Teilmengen U, , von X und V, , von Y sowie ein i € I, sodass U,y x V4 C W;.

X

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Uy, ,, X Vy, 4 fiir festes xg und alle y € Y {iberdecken { ¢ } x y. Da Y’

kompakt ist, ist auch { 2o } x Y kompakt. Also gibt es y1,. .., Y (,) mit Uﬁ(fo) Usoys X
VIOJJi 2 {1'0 } xY.

Sei Uy, = ﬂ;n:(f) Uso,y;- Da X kompakt ist, gibt es z1,..., 2, € X mit J]_; Uz, = X
= U§:1 U?l(fj) (Uay s X Vay) 22X XY

Ein griin-oranges Késtchen

:>Uj UZWZ(.f],yZ) =XxY [ |

Bemerkung 22
Sei X ein Hausdorffraum und K C X kompakt. Dann ist K abgeschlossen.
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Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y € X \ K. Fiir jedes x € K seien
Uy bzw. V,, Umgebungen von = bzw. von y, sodass U, NV, = 0.

Da K kompakt ist, gibt es endlich viele z1,...,z, € K, sodass |J;~, Uy, 2 K.

Sei V := ﬁ Va,
i=1

=Vn (OUJC) =0

i=1
=VNK=10
= V ist Uberdeckung von v, die ganz in X \ K enthalten ist.
= X \ K ist offen

Damit ist K abgeschlossen. ]

Bemerkung 23
Seien X,Y topologische Raume, f : X — Y stetig. Ist K C X kompakt, so ist f(K) CY

kompakt.

Beweis: Sei (V;);e; offene Uberdeckung von f(K)

S stetig (f~%(Vi))ser ist offene Uberdeckung von K

Kompalt o gibt i1,...,4,, sodass f~'(Vi),..., f~1(Vi,) Uberdeckung von K ist.

= f(f7YVi), ..., f(f~5(V;,)) iiberdecken f(K).
Es gilt: f(f~1(V)) =V N f(X)

Satz 1.1 (Heine-Borel)
Eine Teilmenge von R™ oder C" ist genau dann kompakt, wenn sie beschrankt und

abgeschlossen ist.

Beweis: ,,=“ Sei K C R" (oder C™) kompakt.
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Da R™ und C™ hausdorffsch sind, ist K nach Bemerkung 22 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 iiberdeckt werden = K ist
beschréankt.

»,<=*Sei A CR" (oder C") beschrankt und abgeschlossen.

Dann gibt es einen Wiirfel W = [-N, N| x - -+ X [=N, N] mit A C W bzw. ,Polyzylinder*

n mal

Z={(z1,...,2n)€C" |z < Nfiri=1,...,n}

Nach Bemerkung 21 und Bemerkung 19 ist W kompakt, also ist A nach Bemerkung 20 auch
kompakt. Genauso ist Z kompakt, weil

{zeCl 2z <1}
homdéomorph zu

{(@y) eR?||[(z,y)| <1}
ist. -

1.6 Wege und Knoten

Definition 16
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung v : [0,1] — X.
b) v heift geschlossen, wenn y(1) = v(0) gilt.
c) v heilt einfach, wenn 7|o ] injektiv ist.
Beispiel 16
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form
Ve e [0,1] :y(x) =¢, ceX

Denn «([0, 1]) ist zusammenhéngend fiir jeden Weg ~.

Definition 17
Ein topologischer Raum X heifst wegzusammenhingend, wenn es zu je zwei Punkten
z,y € X einen Weg 7 : [0,1] — X gibt mit v(0) = z und (1) = y.

Bemerkung 24
Sei X ein topologischer Raum.

(i) X ist wegzusammenhéngend = X ist zusammenhéngend

(ii) X ist wegzusammenhéngend # X ist zusammenhéngend

Beweis:

(i) Sei X ein wegzusammenhingender topologischer Raum, Aj, A nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A; UAy = X. Seiz € Ay,y € A,y :[0,1] - X
ein Weg von x nach y.
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Dann ist C':= 7([0, 1]) € X zusammenhéngend, weil 7 stetig ist.

C = (CﬂAl)U(CﬂAQ)
o oY

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen = Widerspruch
(ii) SeiX:{(x,y) € R? ’x2+y2:1Vy:1+2.e—%w }

Abbildung 1.8a veranschaulicht diesen Raum.

H | — {(z,sin(1)) € X x Y}
o I
I
(a) Spirale S mit Kreis C (b) Sinus

Abbildung 1.8: Beispiele fiir Rdume, die zusammenhéngend, aber nicht wegzusammenhéngend
sind.

Sei Uy UUy = X,Uy # Uy = 0, U; offen. X = CUS. Dann ist C C Uy oder C C Uy,
weil C' und S zusammenhéngend sind.

Also ist C' = U; und S = Uy (oder umgekehrt).

Sei v € C =Uj,e >0 und B.(y) C U; eine Umgebung von y, die in U; enthalten ist.
Aber: B.(y) NS # 0 = Widerspruch |

Achtung: Es gibt stetige, surjektive Abbildungen [0, 1] — [0, 1] x [0, 1]. Ein Beispiel ist die in
Abbildung 1.9 dargestellte Hilbert-Kurve.

Abbildung 1.9: Hilbert-Kurve

Definition 18
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homéomor-
phismus v : [0,1] = C C X (y: S - C C X)
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Satz 1.2 (Jordanscher Kurvensatz)
Ist C = 7([0,1]) eine geschlossene Jordankurve in R?, so hat R?\ C genau zwei
Zusammenhangskomponenten, von denen eine beschrankt ist und eine unbeschrankt.

SEEES: innen
Jordankurve

Abbildung 1.10: Die unbeschrinkte Zusammenhangskomponente wird hiufig inneres, die be-
schrankte dufteres genannt.

Beweis: ist technisch mithsam und wird daher hier nicht gefiihrt. Er kann in ,,Algebraische
Topologie: Eine Einfiihrung“ von R. Stocker und H. Zieschang auf S. 301f (ISBN 978-
3519122265) nachgelesen werden.

Idee: Ersetze Weg C' durch Polygonzug.

Definition 19
Eine geschlossene Jordankurve in R? heift Knoten.

Beispiel 17

C&HGY

) Trivialer Knoten ) Kleeblattknoten ) Achterknoten ) 62-Knoten

Abbildung 1.11: Beispiele fiir verschiedene Knoten

Definition 20
Zwei Knoten v,z : S' — R3 heiken #Hquivalent, wenn es eine stetige Abbildung H :
St x [0,1] = R3 gibt mit H(z,0) = v1(z), H(z,1) = 72(2) und fiir jedes feste ¢ € [0,1] ist
H,:S' = R? 2+ H(z,t) ein Knoten. Die Abbildung H heift Isotopie zwischen 7; und
V2.

Definition 21
Ein Knotendiagramm eines Knotens ~ ist eine Projektion 7 : R3 — E auf eine Ebene E,
sodass |(m|C)~1(z)| < 2 fiir jedes z € D.

Ist (7|C)~Y(z) = {y1,v2 }, so liegt y; iiber yo, wenn (y; — x) = A(y2 — ) fiir ein A > 1 ist.
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Satz 1.3 (Reidemeister)
Zwei endliche Knotendiagramme gehoren genau dann zu dquivalenten Knoten, wenn sie
durch endlich viele ,,Reidemeister-Ziige** in einander iiberfithrt werden kénnen.

(c) Q3

Abbildung 1.12: Reidemeister-Ziige

Beweis: Durch sorgfiltige Fallunterscheidung.?

Definition 22
Ein Knotendiagramm heifft 3-farbbar, wenn jeder Bogen von D so mit einer Farbe gefirbt
werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben
auftreten.

Abbildung 1.13: Ein 3-gefiarber Kleeblattknoten

3Siehe ,;JKnot Theory and Its Applications® von Kunio Murasugi. ISBN 978-0817638177.
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Ubungsaufgaben
Aufgabe 1 (Sierpinskiraum)

Essel X :={0,1}und Tx :={0,{0},X }. Dies ist der sogenannte Sierpiniskiraum.
(a) Beweisen Sie, dass (X, Tx) ein topologischer Raum ist.
(b) Ist (X,%x) hausdorffsch?

(c) Ist Tx von einer Metrik erzeugt?

Aufgabe 2

Es sei Z mit der von den Mengen U,y := a+ bZ(a € Z,b € Z\ { 0 }) erzeugten Topologie
versehen.

Zeigen Sie:
(a) Jedes U,y und jede einelementige Teilmenge von Z ist abgeschlossen.
(b) { —1,1} ist nicht offen.

(c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Fiir jedes i € N sei P; := { 0,1 } mit der diskreten Topologie. Weiter Sei P := [[,.x B
(a) Wie sehen die offenen Mengen von P aus?

(b) Was konnen Sie iiber den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

(a) Ist GL,(R) = { A € R™*™ | det(A) # 0 } kompakt?
(b) Ist SL,(R) = { A € R"*" | det(A) = 1 } kompakt?

(c) Ist P(R) kompakt?



2 Mannigfaltigkeiten und
Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 23
Sei X ein topologischer Raum und n € N.

a) Eine n-dimensionale Karte auf X ist ein Paar (U, ¢), wobei U C X offen und
¢ : U — V Homoomorphismus von U auf eine offene Teilmenge V' C R™.

b) Ein n-dimensionaler Atlas A auf X ist eine Familie (Uj, ¢;)i;e;r von Karten auf X,
sodass | J;c; Ui = X.

¢) X heifit (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist,
eine abzéhlbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Bemerkung 25
a) Es gibt surjektive, stetige Abbildungen [0, 1] — [0, 1] x [0, 1]

b) Fiir n # m sind R™ und R™ nicht homéomorph. Zum Beweis benutzt man den ,Satz
von der Gebietstreue* (Brouwer):

Ist U C R"™ offen und f : U — R” stetig und injektiv, so ist f(U) offen.
Ist n < m und R™ homéomorph zu R", so wére
fR" - R™ - R" (x1,...,2) — (z1,22,...,2p,0,...,0)
eine stetige injektive Abbildung. Also miisste f(R™) offen sein = Widerspruch
Beispiel 18

1) Jede offene Teilmenge U C R™ ist eine n-dimensionale Mannigfaltigkeit mit einem
Atlas aus einer Karte.

2) C™ ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

(215 oy zn) = (R(21), S(21), -« -, R(2n), S(2n))

3) P*(R) = (R""1\ {0})/~ = 5"/ und P"*(C) sind Mannigfaltigkeiten der Dimension
n bzw. 2n, da gilt:

Sei U :={(zo: - :2y) € P"(R) |2 #0} Vi €0,...,n. Dann ist P"(R) = U, U;
und die Abbildung

Ui—>Rn
(1o cyimr Loyt yn) <~ (Y1, Yn)

21



2.1. TOPOLOGISCHE MANNIGFALTIGKEITEN 22

ist bijektiv.

Die U; mit i = 0,...,n bilden einen n-dimensionalen Atlas:
= (1:0:0)€Uy— R? z+— (0,0)
y=(0:1:1) € Uy — R? y— (0,1)

Umgebung: B1(0,1) = { (1:u:v) | [[(w,0)|| <1} =W
Umgebung: %1(0,1)—>{(w:z:1)’w2+z2<1}:V2

VinVy =07
(a:b:c)eViNVy
=a#0und (2)2+ ()2 <1=<<1
=c#0und (2 +(2)?<1=2<1
= Widerspruch
4) S™ = { x € Rt ‘ lz|| =1 } ist n-dimensionale Mannigfaltigkeit.

Karten: O; := { (z1,...,2pt1) € S" | 2; >0} — B1(0,...,0)
——

ER™
(:cl,... ,xn+1) — ((El,.. Ty . --7-77n+1)

(T1y .y 1,4/ 1 — Zzzlw%,xi,--- ) (T, Ty)
S" = U?:Jrll(cz U Dz)
5) [0, 1] ist keine Mannigfaltigkeit, denn:

Es gibt keine Umgebung von 0 in [0, 1], die homéomorph zu einem offenem Intervall
ist.

6) Vi ={ (z,y) € R? ‘ z -y =0} ist keine Mannigfaltigkeit.

Das Problem ist (0,0). Wenn man diesen Punkt entfernt, zerféllt der Raum in 4
Zusammenhangskomponenten. Jeder R™ zerfillt jedoch in hochstens zwei Zusammen-
hangskomponenten, wenn man einen Punkt entfernt.

7) Vo= { (z,y) € R? ‘ z3 =92 } ist eine Mannigfaltigkeit.
8) X =(R\{0})U(01,02)

U offen in R\ {0}, falls 01 ¢ U,0, € U

U C X offen &

de > 0 mit (—e,e) CU falls 0, € U,0, € U
Insbesondere sind (R\ {0})U{0; } und (R\{0})U{02} offen und homéomorph
zu R.

Aber: X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 01
und 0s.

2

9) GL,(R) ist eine Mannigfaltigkeit der Dimension n*, weil offene Teilmengen von R"’

eine Mannigfaltigkeit bilden.
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Definition 24
Seien X, Y n-dimensionale Mannigfaltigkeiten, U C X und V C Y offen, ® : U — V ein Ho-
maomorphismus Z = (X UY)/~ mit der von u ~ ®(u) Vu € U erzeugten Aquivalenzrelation
und der von ~ induzierten Quotiententopologie.

Z heift Verklebung von X und Y ldngs U und V. Z besitzt einen Atlas aus n-dimensionalen
Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Bemerkung 26
Sind X, Y Mannigfaltigkeiten der Dimension n bzw. m, so ist X x Y eine Mannigfaltigkeit
der Dimension n 4+ m.

Beweis: Produkte von Karten sind Karten. [ |

Beispiel 19
Mannigfaltigkeiten mit Dimension 1:

1) Offene Intervalle, R, (0,1) sind alle homéomorph
2) St
Mannigfaltigkeiten mit Dimension 2:
1) R?
2) 5% (0 Henkel)
3) T? (1 Henkel)
)

4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

L
—

Abbildung 2.1: Zweifachtorus

Bemerkung 27
Sein € N, F : R — R stetig differenzierbar und X = V(F) := {x € R" | F((x) =0 } das
,vanishing set".
Dann gilt:
a) X ist abgeschlossen in R"

b) Ist grad(F)(X) #0 Vz € X, so ist X eine Mannigfaltigkeit der Dimension n — 1.
Beweis:

a) Sei y € R™\ V(F). Weil F stetig ist, gibt es § > 0, sodass F(Bs(y)) C B.(F(y)) mit
e = 3||F(y)||. Folgt Bs(y) NV (F) =0 = R"\ V(F) ist offen.

b) Sei x € X mit grad(F)(z) # 0, also o. B. d. A. 68—)};1(33) #0, z = (z1,...,Tpn),
2’ = (wg,...,2,) € R"L Der Satz von der impliziten Funktion liefert nun: Es

gibt Umgebungen U von z’ und differenzierbare Funktionen g : U — R, sodass
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G:U — R", u+ (g(u),u) eine stetige Abbildung auf eine offene Umgebung V' von x
in X ist.
[ |

Beispiel 20

1) FiR3 SR, (2,9,2) > a2+y2+22—1, V(F) = 82, grad(F) = (2z, 2y, 2z) 2228
S™ ist n-dimensionale Mannigfaltigkeit in Rl

2) F:R2 5 R, (z,y)+— y?—23 Esgilt: grad(F) = (=322, 2y). Also: grad(0,0) = (0,0).

100

—100

(a) Fz,y) =y* —a° (b) y> —az® =0
Abbildung 2.2: Rechts ist die Neilsche Parabel fiir verschiedene Parameter a.
Daher ist Bemerkung 27.b nicht anwendbar, aber V (F') ist trotzdem eine 1-dimensionale
topologische Mannigfaltigkeit.

Definition 25
Sei X ein Hausdorffraum mit abzahlbarer Basis der Topologie. X heifit n-dimensionale

Mannigfaltigkeit mit Rand, wenn es einen Atlas (U;, ;) gibt, wobei U; C X; offen und
; ein Homoéomorphismus auf eine offene Teilmenge von

to=1(z1,...,zn) ER" |21, 20}

ist. RY  ist ein ,,Halbraum®.

Definition 26
Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas (U;, ¢;). Dann heifit

0X :=|J{z U] ¢i(z)n=0}
el

Rand von X.

0X ist eine Mannigfaltigkeit der Dimension n — 1.

Definition 27
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U, ¢;)ier
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7.
1777777777777 777777 7777777777777

) Halbraum
) Pair of pants ¢) Sphére mit einem Loch

Abbildung 2.3: Beispiele fiir Mannigfaltigkeiten mit Rand

Fiir 4,5 € I mit U;, U;j # 0 heifit

Yij = ;0 90;1
wi(Us NU;) = ¢;(U; N U;)

Kartenwechsel oder Ubergangsfunktion.

Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 28
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U;, ¢;)icr-

a) X heift differenzierbare Mannigfaltigkeit der Klasse C*, wenn jede Karten-
wechselabbildung ¢;;, ¢,j € I k-mal stetig differenzierbar ist.

b) X heift differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannig-
faltigkeit der Klasse C'™ ist

Definition 29
Sei X eine differenzierbare Mannigfaltigkeit der Klasse C* (k € NU { 0o }) mit Atlas

(Ui, vi)ier-
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a) Eine Karte (U, p) auf X heifit vertréiglich mit A, wenn alle Kartenwechsel o o ¢;
und ; 0 ! (i € I mit U; N U # 0) differenzierbar von Klasse C* sind.

b) Die Menge aller mit A vertriglichen Karten auf X bildet einen maximalen Atlas von
Klasse C*. Er heikt C*-Struktur auf X.

Eine C*°-Struktur heifit auch differenzierbare Struktur auf X.
Bemerkung 28
Fiir n > 4 gibt es auf S™ mehrere verschiedene differenzierbare Strukturen, die sog. ,exotische
Sphéren‘.

Definition 30
Seien XY differenzierbare Mannigfaltigkeiten der Dimension n bzw. m, x € X.

a) Eine stetige Abbildung f : X — Y heift differenzierbar in 2 (von Klasse C*), wenn
es Karten (U,¢) von X mit z € U und (V,%) von Y mit f(U) C V gibt, sodass
Yo fop ! stetig differenzierbar von Klasse C* in o(z) ist.

b) f heift differenzierbar (von Klasse C*), wenn f in jedem = € X differenzierbar ist.

c¢) f heifst Diffeomorphismus, wenn f differenzierbar von Klasse C* ist und es eine
differenzierbare Abbildung g : ¥ — X von Klasse C*° gibt mit g o f = idx und

fog=idy.
Bemerkung 29
Die Bedingung in Definition 30.a hangt nicht von den gewahlten Karten ab.

Beweis: Seien (U',¢’) und (V’,4’) Karten von X bzw. Y um x bzw. f(x) mit f(U’) C V'.
= ¢'ofo(p)!
=y’ o( oo fo(ptop)o(¥)!
ist genau dann differenzierbar, wenn 1 o f o ¢! differenzierbar ist.

Beispiel 21
f:R =R, x+ 23ist kein Diffeomorphismus, aber Homdomorphismus, da mit g(z) := ¢z
gilt: fog=1idr, go f=idg

Bemerkung 30
Sei X eine glatte Mannigfaltigkeit. Dann ist

Diffeo(X) :={ f : X — X | f ist Diffeomorphismus }

eine Untergruppe von Homoo(X).

Definition 31
S C R3? heifit reguliire Fliche :< Vs € S 3 Umgebung V(s) € R® 3U C R? offen:
3 differenzierbare Abbildung F: U — VN S: Rg(Jp(u)) =2 Vu e U.

F heifst (lokale) reguldre Parametrisierung von S.

F(u,v) = (z(u,v),y(u,v), z(u,v))
2L(p) 9E(n)
Ietu) = | ) o)
5.(P)  5:(p)
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Beispiel 22
1) Rotationsflachen: Sei r : R — Ry eine differenzierbare Funktion.

F:R2 5 R3 (u,v) > (r(u)cos(u), r(v)sin(u),v)

=2
0D
R

7%
7%
1y
1\

1)
T

7
7
III
LI

475
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I
N
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7%
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/1)

,,
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%57
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7l
i

%
l;;
i

292 -1

(b) Rotationskérper

S

(a) Kugelkoordinaten

Y

0.5 1

ol g

~0.5 +

(c) Sinus und Kosinus haben keine gemeinsame Nullstelle

—r(v)sinu r'(v)cosu
Jr(u,v) = | r(v)cosu r'(v)sinu
0 1

hat Rang 2 fiir alle (u,v) € R2.

2) Kugelkoordinaten: F : R? — R3, (u,v) — (Rcosvcosu,Rcosvsinu, Rsinv)

F(u,v) € S%, denn
R? cos?(v) cos®(u) + R? cos?(v) sin?(u) + R? sin?(v)
=R?(cos?(v) cos®(u) 4 cos®(v) sin®(u) + sin?(v))
=R? (cos®(v)(cos®(u) + sin®(u)) + sin®(v))
=R? (cos®(v) + sin®(v))
=R?
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Die Jacobi-Matrix

—Rcosvsinu —Rsinvcosu
Jrp(u,v) = | Rcosvcosu —Rsinvsinu
0 Rcoswv

hat Rang 2 fiir cosv # 0. In N und S ist cosv = 0.

Bemerkung 31
Jede regulire Fliche S C R? ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis: z.7Z.: Fq._1 o F; ist Diffeomorphismus

Abbildung 2.5: Regulédre Flache S zum Beweis von Bemerkung 31

Idee: Finde differenzierbare Funktion F j_l in Umgebung W von s, sodass F' ]._1| snw = F ]._1.
Ausfithrung: Sei ug € U; mit Fj(ug) = s = Fj(vo),vo € Uj.
Da rg Jp; (vo) = 2 ist, ist 0. B. d. A.

det (

und Fj(u,v) = (z(u,v),y(u,v), 2(u,v)).

)(vo)#o

SSSE
SIS

Definiere E U xR — R? durch

Fj(u,v,t) = (x(u,v),y(u, v), 2(u,v) + t)

Offensichtlich: E/-|ij 0y =Fj

gz dz
gu o

JE = 3—2 g—g 0| = det JE(Uo,O) #£0
gu oo 1

Analys 1L g gibt Umgebungen W von Fj von E(Uo, 0) = Fjj(vo) = s, sodass E auf W eine

differenzierbar Inverse Fj_1 hat.

Weiter ist E_1|WQS = F’;1|WQS = ijl ) E|Fi‘1(WnS) = F;l o FilFi‘l(WmS) ist differenzier-
bar.

Definition 32
Sei G eine Mannigfaltigkeit, o : G x G — G eine Abbildung, (g,h) — g - h, sodass (G, o)
eine Gruppe ist.
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a) G heifit topologische Gruppe, wenn die Abbildungen o : GxG — Gund ¢ : G — G.

(g,h) > g-h grgt

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heift G Lie-Gruppe, wenn (G, o) und
(G, 1) differenzierbar sind.

Beispiel 23
1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.

GLn(R)

R™,+), denn A - B(%,7) = Y aixby; ist nach allen Variablen differenzierbar

_ .. det(A;;
(A1) (i, j) = i)

a;1 cee Qin
Aij — ‘L e R(n—l)x(n—l)

anl ... Qpn

ist differenzierbar.

det A;; kann 0 werden, da:
1 1
-1 0
6) SL,(R) ={ A € GL,(R) | det(A4) =1}
grad(det —1)(A) = 07
o (det —1) =1-det A11

dai1

Es gibt i € {1,...,n} mit 32— (det —1)A # 0

Bemerkung 32
Ist G eine Lie-Gruppe, g € G, so ist die Abbildung

lg:G—=G
h—g-h

ein Diffeomorphismus.

2.3 Simplizialkomplex

Definition 33
Seien vy, ..., v € R™ Punkte.
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a) vo, ...,V sind in allgemeiner Lage < es gibt keinen (k — 1)-dimensionalen affinen
Untervektorraum, der vy, ..., v, enthilt v — vy, ..., v — vo sind linear abhéngig.

b) COHV(U(), N ,’Uk) = { Zf:o )\ivi )\i > 0, Zf:o )\i =1 }

Definition 34
a) Sei A* = conv(eg,...,ex) € R"! die konvexe Hiille der Standard-Basisvektoren

€0y - - - Ch-

Dann heift A¥ Standard-Simplex und & die Dimension des Simplex.

b) Fiir Punkte vy, ..., v im R™ in allgemeiner Lage heifst 6(vo, ..., vx) = conv(vy, . .., vk)
ein k-Simplex in R"™.

c) Ist A(vo,...,v;) ein k-Simplex und I = { 4g,..., 4 } C{0,...,k }, so heifst s;, _;, =
conv(vj, . .., v;,) Teilsimplex oder Seite von A.
Sig,....i, 15t r-Simplex.

[ )
(a) 0-Simplex A°

3 3 e
X €1 3
2 2 €2
i | €2
14 1
| €0 | )
T T~ 1 T [
1 2 3 1 2 3 €0 €1
(b) 1-Simplex A' (c) 2-Simplex A? (d) 3-Simplex A?

Abbildung 2.6: Beispiele fiir k-Simplexe

Definition 35
a) Eine endliche Menge K von Simplizes im R™ heifst (endlicher) Simplizialkomplex,
wenn gilt:

(i) Fir A € K und S C A Teilsimplex ist S € K
(ii) Fir Ay, Ag € K ist A; N Ag leer oder ein Teilsimplex von A; und von Ay

b) |K|:=Upaecx A (mit Spurtopologie) heift geometrische Realisierung von K.

c) Ist d = max{ k | K enthalt k¥ — Simplex }, so heifit d Dimension von K.

Definition 36
Seien K, L Simplizialkomplexe. Eine stetige Abbildung

foKl = L]

heiflt simplizial, wenn fiir jedes A € K gilt:
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O L L

(a) 1D Simplizialkomplex (b) 2D Simplizialkomplex ) 2D Simplizialkomplex
(ohne untere Fliche!)

(d) 1D Simplizialkomplex (e) 2D Simplizialkomplex

(f) P ist kein Teilsimplex, da Eigen- (g) Simplizialkomplex
schaft Punkt b.ii verletzt ist

Abbildung 2.7: Beispiele fiir Simplizialkomplexe

a) f(A)eL
b) fla: A — f(A) ist eine affine Abbildung.

Beispiel 24

1) p(e1) = b, p(e2) := by
 ist eine eindeutig bestimmte lineare Abbildung

bo

€1

12
_—

0 €2 0 ® by

2) Folgende Abbildung A™ — A1 ist simplizial:
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Quotient nach

Punktspiegelung

Definition 37

Sei K ein endlicher Simplizialkomplex. Fiir n > 0 sei a,(K) die Anzahl der n-Simplizes in
K.

Dann heifdt

Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 25

1) x(Ah=2-1=1
A?)=3-3+1=1
A

X(
x(A%)=4-6+4-1=1
2) x(Oktaeder-Oberfliche) =6 — 12 +8 =2
X(Rand des Tetraeders) = 2
X(Ikosaeder) = 12 — 30 + 20 = 2
3) x(Wiirfel) =8 —12+6 =2
(

x(Wiirfel, unterteilt in Dreiecksflachen) =8 — (12 +6) + (6-2) =2

Bemerkung 33
X(A™) =1 fiir jedes n € Ny

Beweis: A" ist die konvexe Hiille von (e, ..., e,) in R"1. Jede (k + 1)-elementige Teilmenge
von { eq, ..., ey, } definiert ein k-Simplex.
= ap(A") = (Zii), k=0,....,n

= x(A") = Spoo(-DF ()
Binomischer
f(x) — (113 + 1)n_|_1 Lehr:satz 'Zl—é (Tb-kl:-].)xk
= 0=>30 () ()P = x(am) ~ 1
= x(A") =1 (]
Definition 38
a) Ein 1D-Simplizialkomplex heifst Graph.

b) Ein Graph, der homdomorph zu S ist, heifit Kreis.
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(a) Dies wird haufig auch als(b) Planare Einbettung des Te-
Multigraph bezeichnet. traeders

(c) Ks

Abbildung 2.8: Beispiele fiir Graphen

(d) Ks,3

¢) Ein zusammenhéngender Graph heift Baum, wenn er keinen Kreis enthélt.

Bemerkung 34
Fiir jeden Baum T gilt v(T') = 1.

Beweis: Induktion tiber die Anzahl der Ecken.

Bemerkung 35
a) Jeder zusammenhingende Graph I enthélt einen Teilbaum 7', der alle Ecken von I"
enthilt.!

b) Ist n = a1(T") = a1(T), so ist x(T') =1 —n.
Beweis:
a) Siehe ,Algorithmus von Kruskal®.
b) x(T') = ao(T') — a1 (T")
= ao(l') — (n+ a1(T))
=ao(T)—a1(T) —n

=x(T) —n
=1—n

Bemerkung 36
Sei A ein n-Simplex und z € A° C R™. Sei K der Simplizialkomplex, der aus A durch
sUnterteilung® in = entsteht. Dann ist x(K) = x(A) = 1.

Beweis: x(K) =x(A)— (-1)" +Y (-1 =x(4) |
“ k=0

n—Simplex

(1+(-1)+?

T wird ,Spannbaum“ genannt.
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(b) A, das aus K durch Unter-
teilung entsteht

Abbildung 2.9: Beispiel fiir Bemerkung 36.

Satz 2.1 (Eulersche Polyederformel)
Sei P ein konvexes Polyeder in R3, d. h. 9P ist ein 2-dimensionaler Simplizialkomplex,

sodass gilt:
Vz,y € OP: [z,y] C P

Dann ist x(0P) = 2.

Beweis:
1) Die Aussage ist richtig fiir den Tetraeder.

2) O.B.d. A.sei 0 € Pund P C 9B1(0). Projeziere 0P von 0 aus auf 0%;(0) = S2.
Erhalte Triangulierung von S2.

3) Sind P; und P, konvexe Polygone und Ty, Ty die zugehdrigen Triangulierungen von S2,
so gibt es eine eine Triangulierungen 7', die sowohl um 77 als auch um 75 Verfeinerung
ist.

S )
Ty
?

7

*
o

Nach Bemerkung 36 ist x(0P1) = x(T1) = x(T') = x(T2) = x(0P) = 2, weil 0. B. d. A.
P, ein Tetraeder ist.

Bemerkung 37 (Der Rand vom Rand ist 0)
Sei K ein (endlicher) Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf

V.
Sei A, die Menge der n-Simplizes in K, d. h.

Ap(K) ={oce€e K |dim(c)=n} firn=0,...,d=dim(K)

und Cy,(K) der R-Vektorraum mit Basis A, (K), d. h.

Cn(K) = Z Co-0|cs ER
0€AL(K)
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Sei 0 = A(zg, ..., xp) € Ap(K), sodass 29 < z1 < -+ < T,

Firi =0,...,n sei 00 :== A(zg,...,%4,...,Ty) die i-te Seite von o und d, = d,o :=
Zizo(—l)iﬁia € Cp_1(K) und d,, : Cp(K) — C,_1(K) die dadurch definierte lineare
Abbildung.

Dann gilt: d,,—10d, =0

a €3 b

Beispiel 26
a<b<ec

dyo=e;1—ea+es=(c—b)—(c—a)+(b—a)=0

Beweis: Sei 0 € A,,. Dann gilt:

n

dn1(dno) = dp-1(>_(~1)'0io)

=0

= (~1)'dp_1(8i0)
=0

n n—1

=Y (=)' 0i(90)(~1)
i=0 j=0

= Y (=000 + D (=1)Ti1(950)
0<i<j<n—1 0<j<i<n

=0

weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit
umgekehrten Vorzeichen. [ |

Definition 39
Sei Z,, := Kern(d,) C C,, und B,, := Bild(d,+1) C C),.

a) H, = H,(K,R) := Z,,/B,, heifit n-te Homotopiegruppe von K.
b) b,(K) := dimg H,, heilt n-te Belti-Zahl von K.

Bemerkung 38
Nach Bemerkung 37 ist B,, C Z,,, denn d,,11(C) € Kern(d,) fir C' € Cy4;.
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Satz 2.2
Fiir jeden endlichen Simplizialkomplex K der Dimension d gilt:
d d
S0 (K) = SO (~1Fan(K) = (K)
k=0 k=0
Bemerkung 39
Es gilt nicht a; = by Vk € Ny.
Beweis:
e Dimensionsformel fiir d,: a,, = dim Z,, + dim B,,_1 firn > 1
e Dimensionsformel fir Z,, - H,, = Z,,/B,, : dim Z,, = b,, + dim B,,
d d
= (—DFap = ag+ > (~1)*(dim Zj, + dim By,_) (2.1)
k=0 k=1
d d
=ap+» (-1)fdimZ, + > (-1 dim By, (2.2)
k=1 k=0
d d
=ao+» (-1)fdimZ, - > (~1)* dim By, (2.3)
k=1 k=0
d—1
=ag+ Y _(—1)"bg + (—1)% dim Z; — dim By (2.4)
~—
k=1 b
d—1
=by + (—1)kbk -+ (—1)dbd (2.5)
k=1
d
= (=1t (2.6)
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Ubungsaufgaben

Aufgabe 5 (Zusammenhang)

(a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhén-
gend ist, wenn sie zusammenhéngend ist

(b) Betrachten Sie nun wie in Beispiel 18.8 den Raum X := (R\{ 0 })U{ 01,02 } versehen
mit der dort definierten Topologie. Ist X wegzusammenhéngend?



3 Fundamentalgruppe und Uberlagerungen

3.1 Homotopie von Wegen

! !

a b a b
72 72
(a) 1 und 72 sind homotop, (b) y1 und v sind wegen dem
da man sie ,zueinander ver- Hindernis nicht homotop.

schieben* kann.

Abbildung 3.1: Beispiele fiir Wege 1 und 7

Definition 40
Sei X ein topologischer Raum, a,b € X, 71,72 : [0,1] — X Wege von a nach b, d. h.
71(0) =72(0) = a, 11 (1) =2(1) =0

a) 1 und 7, heiffen homotop, wenn es eine stetige Abbildung
H(t,0) =v(t),H(t,1) =v2(t) Vte[0,1]=:1T
und H(0,s) = a und H(1,s) = b fiir alle s € I gibt. Dann schreibt man: v ~ 7o

H heifst Homotopie zwischen 1 und ~s.

b) vs: I — X,vs(t) = H(t,s) ist Weg in X von a nach b fiir jedes s € I.

Bemerkung 40
JHomotop“ ist eine Aquivalenzrelation auf der Menge aller Wege in X von a nach b.

Beweis:
o reflexiv: H(t,s) =~(t) firallet,s € I x I
e symmetrisch: H'(t,s) = H(t,1 —s) fiir alle t,s € I x I
e transitiv: Seien H' bzw. H” Homotopien von 7, nach -2 bzw. von 73 nach 3.

H'(t,2s) falls 0 < s < 3

Dann sei H(t,s) := . )
H"(t,2s —1) falls 5 <s<1

= H ist stetig und Homotopie von 1 nach o

Beispiel 27
1) Sei X = S'. 4, und 5 aus Abbildung 3.3a nicht homé&otop.

38
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2) Sei X = T2 ~1,7 und 3 aus Abbildung 3.3b sind paarweise nicht homdotop.
3) Sei X =R? und a = b = (0,0).

Je zwei Wege im R? mit Anfangs- und Endpunkt (0,0) sind homdotop.

Abbildung 3.2: Zwei Wege im R? mit Anfangs- und Endpunkt (0,0)

Sei vo : I — R? der konstante Weg ~vo(t) = 0 V¢ € I. Sei v(0) = (1) = 0.

H(t,s) := (1 —s)y(t) ist stetig, H(¢,0) =~(t) Vt € [ und H(t,1) =0Vt e [

b
m
a
(a) Kreis mit zwei Wegen (b) Torus mit drei Wegen

Abbildung 3.3: Beispiele fiir (nicht)-Homotopie von Wegen

Bemerkung 41
Sei X ein topologischer Raum, v : I — X ein Weg und ¢ : I — I stetig mit ¢(0) = 0,
(1) = 1. Dann sind ~ und 7 o ¢ homotop.

Beweis: Sei H(t,s) = v((1 — s)t + s - p(t)).

Dann ist H stetig, H(t,0) = v(t), H(t,1) = v(e(t)), H(0,s) =~(0) und H(1,s) =

(1 —s+s)=7(1)
= H ist Homotopie. |
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Definition 41
Seien 71,72 Wege in X mit 71(1) = 12(0). Dann ist

(t) = v1(2t) falls0 < ¢ < 1
e Yo(2t — 1) fallsi <t <1

ein Weg in X. Er heifst zusammengesetzter Weg und man schreibt v = 1 * 7s.

Bemerkung 42

Das zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:
Y1k (Y25 93) # (1% 72) * 73
Y1 % (2 % 73) ~ (71 % 72) * 73
mit 71 (1) = 72(0) und 72(1) = 3(0).
| | | |
! ga! ! ! 73 !
0 1/2 3/4 1

(&) 71 % (v2 *73)

[ | |
il ! ! 73 !
0 1/4 1/2 1

(b) (71 *7y2) * 73

Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Bemerkung 41 bis auf Homotopie assoziativ,

da
%t fallsO§t<%
Yt)=<St—1 fallsi<t<?
2t—1 falls2<t<1

Bemerkung 43

Sei X ein topologischer Raum, a,b,c € X, 71,7 Wege von a nach b und 72, v, Wege von b
nach c.

Sind 1 ~ ] und 2 ~ 5, 80 ist Y1 * Y2 ~ Y] * V5.

Abbildung 3.5: Situation aus Bemerkung 43

Beweis: Sei H; eine Homotopie zwischen ; und ~/, ¢ = 1, 2.
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Dann ist

<
H(t,s) := {Hl@tv s) falls 0 < ¢t

<
Hy(2t —1,s) falls % <t<

Homotopie zwischen 7 * 2 und v * 74 (!)

3.2 Fundamentalgruppe

Fiir einen Weg + sei [y] seine Homotopieklasse.

Definition 42
Sei X ein topologischer Raum und z € X. Sei auferdem

T (X, z) == {[y] | v ist Weg in X mit v(0) =~(1) =z}

Durch [y1] *¢ [y2] := [11 * 2] wird 71 (X, x) zu einer Gruppe. Diese Gruppe heift Funda-

mentalgruppe in X im Basispunkt x.

Bemerkung 44
Im R? gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)
a) Abgeschlossenheit folgt direkt aus der Definition von ¢
b) Assoziativitat folgt aus Bemerkung 42
c¢) Neutrales Element e = [y],70(t) =2 Vtel.ex[y]=[y]=[y]*xe,day*xy~r
1

d) Inverses Element [y]™' = [7] = [y(1 — t)], denn ¥ sy ~ 9 ~ v x 7

Beispiel 28
1) S'={zeC||z[=1}={(cosp,sing) eR? | 0 < p <27 }

ML) ={|kez} =27

Kl k

v
2) 71 (R2,0) = 7 (R?,2) = { e} fiir jedes z € R?

3) m(R™ x) = {e} fir jedes x € R"

4) G C R™ heift sternfoérmig bzgl. z € G, wenn fiir jedes y € G auch die Strecke
[z,y] C G ist.

Fiir jedes sternformige G C R™ ist m (G, z) = { e}

5) m1(S%,20) = { e}, da im R? alle Wege homotop zu { e } sind. Mithilfe der stereogra-
phischen Projektion kann von S? auf den R? abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flichendeckenden Wegen!
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Abbildung 3.6: Sternférmiges Gebiet

Bemerkung 45
Sei X ein topologischer Raum, a,b € X, § : I — X ein Weg von a nach b.

Dann ist die Abbildung

a:m(X,a) - m(X,b0) [y]— [0y %]

ein Gruppenisomorphismus.

TODO

Abbildung 3.7: Situation aus Bemerkung 45

Beweis:

a([n] * [12]) = [0 * (172) * 9]

[6 % 1 % 0 % & % Yo % 0] = [0 %1 % 6] * [0 % 2 % 6]
= a(im]) * a([r])
Definition 43

Ein wegzusammenhéngender topologischer Raum X heift einfach zusammenhingend,
wenn 71 (X, x) = { e} fir ein (jedes) z € X.

Bemerkung 46
Es seien X, Y topologische Riume, f : X — Y eine stetige Abbildung, = € X,y := f(z) € Y.

a) Dann ist die Abbildung f, : m (X, z) — m1(Y,y), [y] = [f o y] ein Gruppenhomomor-
phismus.

b) Ist Z ein weiterer topologischer Raum und ¢ : Y — Z eine stetige Abbildung z := g(y).
Dann ist (go f)« = g0 fo : m(X,2) — m1(Z, 2)

Beweis:

a) f. ist wohldefiniert: Seien 71,2 homotope Wege von x. z.Z.: fo~vy; ~ f o~y Nach
Voraussetzung gibt es stetige Abbildungen H : I xI — X mit H(t,0) = y1(t), H(¢,1) =
v2(t), H(0,S) = H(1,S) = x. Dann ist foH : I x I — Y mit ... (f o H)(t,0) =
fH($,0)) = f(m(t) = (for)(t) ete. = foyi ~ fora.

fellml*[e]) = [f o (i xy2)] = [(f o)l % [(f 0 72)] = fullm]) * fu([r2])
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b) (go f)«([V]) =1[(go flovl=1lgo (fon)]=g«([f o) = g:(fu([7]) = (g © f)([V])

Beispiel 29
1) f:S! < R?ist injektiv, aber fi : m1(S1,1) 2 Z — m(R?,1) — 0 { e } ist nicht injektiv

2) f:R — St (cos2mt,sin 2nt) ist surjektiv, aber f, : m1(R,0) = { e } — (9%, 1) =
7. ist nicht surjektiv

Bemerkung 47
Sei f: X — Y ein Homéomorphismus zwischen topologischen Rdumen X, Y. Dann gilt:

f* : 71-1()(7‘/13) — 7Tl(Y;f(x))
ist ein Isomorphismus fiir jedes z € X.
Beweis: Sei g: Y — X die Umkehrabbildung, d. h. g ist stetig und fog=1idy, go f =idx

= feoge=(fog)s = (idy)s = idyy (v,px) und gy 0 fi = idg (x a)-

Definition 44
Seien X, Y topologische Réume, ¢ € X,yp € Y, f,g: X — Y stetig mit f(z9) = yo = g(z0).

f und g heiffen homotop (f ~ g), wenn es eine stetige Abbildung H : X x I — Y gibt mit
H(X,0) = f(X),H(X,1) = g(x) fir alle x € X und H(x0,S) = yo fur alle s € I.

Bemerkung 48
Sind f und g homotop, so ist f, = g« : m1 (X, x0) = ™1 (Y, y0)-

Beweis: Sei 7 ein geschlossener Weg in X um g, d. h. [y] € m1(X, zg).

7.7.: foy~gor

Sei dazu Hy : I x I =Y, (t,s) — H(vy(t),S). Dann gilt: H,(¢,0) = H(v(¢),0) = (g o y)(1),
H,(1,s) = H(y(1),s) = H(xo, s) = yo fir alle s.

Beispiel 30
f: X—=>Y g:Y = Xmitgof~idyx, fog~idy

= f, ist Isomorphismus. Konkret: f : R> = {0}, g:{0} — R?
:fog:id{o},gof:R2—>R2,xr—>0fﬁrallex.

go f ~ idge mit Homotopie: H : R? x I — R? H(x,S) = (1 — s)x (stetig!)
= H(X,0) = X = idge(X), H(X,1) = 0, H(0,s) = 0 fiir alle s €

Satz 3.1 (Satz von Seifert und van Kampen ,light*)
Sei X ein topologischer Raum, U,V C X offen mit U UV = X und U NV wegzusam-
menhéngend.

Dann wird 71 (X, z) fir x € U NV erzeugt von geschlossenen Wegen um z, die ganz in
U oder ganz in V verlaufen.

Beweis: Sei v : I — X ein geschlossener Weg von . Uberdecke I mit endlich vielen offenen
Intervallen, die ganz in v~ *(U) oder ganz in y~!(V) liegen.
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O.B. d. A.sei y(I1) CU,v(I2) CV, etc.

Wihle t; € I; N 111, also y(t;) € UNV. Sei 0; Weg in U NV von zg nach ~(t;) = v ist
homotop zu

Y1 KOL*KOL %Yo x O2% % Op—1 %72

—_—— ——

in U inV

X

Abbildung 3.8: Topologischer Raum X

Beispiel 31
1) Sei X wie in Abbildung 3.8. w1 (X, ) wird ,frei“ erzeugt von a und b, weil m1 (U, z) =<
a>=7,m(V,x) =< b >= Z, insbesondere ist a * b nicht homotop zu b * a.

2) Torus: 71(T?, X) wird erzeugt von a und b.

7777777770777 A777707777777777777777770777787777V 77777777
P Y AR s
P Y A AR v vy
B . A AR a iy yyyyy
P Y AR v iy
B Y A AR vl oy yyyyy
P Y X AR L Ly
B Y A AR W e iy
B Y Y AR, Wi L iy T

1 222022277722277722277732722728 777
P Y, Y Y AR s L yyyryyl
YTy XXy Y AR v vy
P Y AR s yyyryy
WYYV YYYY VY VY VYY) YV Yy VY Y YV VYY)
777777777777 77777707077777777777777778277777777777727777
Sy 77 A Ayl
77777777777777777747777777 107070 00777777777777777777

7 2002727227777
TIIIII70777777 2077227777 11177700777
YIIIIIIIIIIIIIIII 7777777777777 777777777707707777777777
L7777 7777777777777 7777777727777
177777077 7777777727777 1007770777 7777777777777727777
2072227277777 72000 0777270077277777727277772777777
I 7 7777777777777 7277777727777
0007777770077 77707777770777777777227077727777
LI 777777777777777777777727777
0000270077 77777777707777777777777777727777722077727777
177177777777 7777777777777 2077227777
2000727007 777007777707777777777727777772777772077777777
177777777777 7777777777777727777
1T 7777777777777 777777777777777707777777777
7770777777777 7777777777777727777
I 77 777777777777 7777777727777
0770777777077 7777777777777277777727777
I 77777777777777277777727777
0077772700777 7707777770777777777227777727777
10772777777277777

R A A R
777722777772777 1770000777777777770077777777772777777 N
27777777777777727770727777277777772777877727727772727272227277 ?
paaR Ly v AR e N

777472277277272277777747777 > N
A A AR v vy vyl N
2777777777777 40777 000007000077777777 780772727 7227727777 N
P Y AR Lda Ly yyyyy N
2772772777777 740777 000077270077777777 782777227 72227727777 N

P A Ay vy vy

7777777770727 4227700007722 777777 o  rrrrryy
2277727277077 7R0 277 077077727277727777 782722222720 22727777 N :
P, Y AR Lia iy N N
B . A AR vl o yyny v
P Y AR Lia iy v
2777772777077 702 777477072077072077077 087777 270700277777 77 Yyt
P Y AR Lia i RRRN
P Y Xy AR i i yyyryy Y vy

Abbildung 3.9: axb=bxa < axbxaxb~e

3.3 Uberlagerungen

Definition 45
Es seien X, Y zusammenhéngende topologische Rdume und p : Y — X eine stetige Abbil-
dung.

p heift Uberlagerung, wenn jedes z € X eine offene Umgebung U = U(z) C X besitzt,
sodass p~1(U) disjunkte Vereinigung von offenen Teilmengen V; C Y ist (j € I) und
plv; : V; = U ein Homdomorphismus ist.

Beispiel 32
1) siehe Abbildung 3.10

2) siehe Abbildung 3.11a
3) R* — T = R"/Z"
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Sl

xT

Abbildung 3.10: R — S*,
t +— (cos27t, sin 27t)

4) S™ — P"(R)
5) St — 81 2+ 22, siehe Abbildung 3.11b

(a) R? - T? = R?/Z> (b) t — (cos4mt, sin 4rt)
Abbildung 3.11: Beispiele fiir Uberlagerungen

Bemerkung 49
Uberlagerungen sind surjektiv.

Beweis: durch Widerspruch
Sei p eine Uberlagerung.

Annahme: p ist nicht surjektiv

Dann 3z € X mit U = U(x) : p~}(U) = 0. Da p eine Uberlagerung ist, existiert eine offene
Umgebung U, sodass p~*(U) eine disjunkte Vereinigung von offenen Teilmengen V; C 'Y ist
und p|Vj : Vj = U ein Hom6omorphismus ist.

Da jedes x eine solche Umgebung U besitzt, ist U # (). Da p|Vj : Vj = U ein Homd6omor-
phismus ist, kann also auch V; nicht leer sein. = Widerspruch zur Annahme. |

Definition 46
Seien XY topologische Rdume und f : X — Y eine Abbildung.

[ heift offen :< VV C X offen: f(V) ist offen in Y.

Bemerkung 50
Uberlappungen sind offene Abbildungen.



3.3. UBERLAGERUNGEN 46

Beweis: Seiy € V und z € p(V), sodass x = p(y) gilt. Sei weiter U = U, die offene Umgebung
von z wie in Definition 45 und V; die Komponente von p~!(U), die y enthiilt.

Dann ist V' N'V; offene Umgebung von y.

= p(V NVj) ist offen in p(V}), also auch offen in X. Aukerdem ist p(y) = € p(V NVj) und
p(V'0Vj) S p(V).

= p(V) ist offen.

Definition 47
Sei M eine Menge und X ein topologischer Raum.

M heiftt diskret in X, wenn M in X keinen Haufungspunkt hat.

Bemerkung 51
Sei p: Y — X Uberlagerung, = € X.

a) X hausdorffsch = Y hausdorffsch
b) p~(X) ist diskret in YV’

Beweis:
a) Seien y1,y2 € Y.

1. Fall: p(y1) = p(y2) = .

Sei U Umgebung von x wie in Definition 45, V}, bzw. Vj, die Komponente von p~*(U),
die y1 bzw. yo enthalt.

Dann ist Vj, # Vj,, weil beide ein Element aus p~!(z) enthalten.
= Vj, NV;, = 0 nach Voraussetzung.
2. Fall: p(y1) # p(y2).
Dann seien U; und Uj disjunkte Umgebungen von p(y;) und p(y2).
= p~1(U1) und p~1(Us) sind Umgebungen von y; und ys.

b) Seiy €Y
1. Fall: y € p~'(2)

Finde vj, sodass kein ...

2. Fall: y ¢ p~1(x)
T

Bemerkung 52 (Eindeutigkeit der Liftung)
Sei p: Y — X Uberlagerung, x1, s € X.

Dann ist [p~!(z1)| = [p~!(x2)|.!

Hp~!(z1)| = oo ist erlaubt!
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Beweis: Sei U Umgebung von x; wie in Definition 45, x € U. Dann enthalt jedes Vj,j € Ix
genau ein Element von p~!(z)

= [p~!(z)| ist konstant auf U

Xrhede lp~1(z)]| ist konstant auf X

Definition 48
Sei p: Y — X Uberlagerung, Z ein weiterer topologischer Raum, f : Z — X stetig.

Eine stetige Abbildung f : Z — Y heifit Liftung von f, wenn po f = f ist.

6
5
4
> !
]
1
%1 2 3 4 5 6
7 Liften, g2 /72

Abbildung 3.12: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht ge-
schlossen

Bemerkung 53
Sei Z zusammenhéngend und fy,..., f; : Z — Y Liftungen von f.

3z € Z: folz) = filz) = fo=f1

Abbildung 3.13: Situation aus Bemerkung 53

Beweis: SeiT'={z¢€ Z| fo(z) = fi(?) }.
Z. 7.: T ist offen und Z \ T ist auch offen.

Sei z € T,z = f(2),U Umgebung von x wie in Definition 45, V' die Komponente von p~1(U),
die y = fo(2) = fu(2).
Sei ¢ : U — V die Umkehrabbildung zu p|y .




3.3. UBERLAGERUNGEN 48

Sei W := f~1({U) N fy (V)N f7 (V). W ist offene Umgebung in Z von z.

Behauptung: B C T

Denn fiir w € W ist a(f(w)) = a((po fo))(w) = ((qop) o fo)(w) = fo(w) = a(f(w)) = fi(w)
= T ist offen.

Analog: Z \ T ist offen.

Satz 3.2
Sei p: Y — X Uberlagerung, v: I — X ein Weg, y € Y mit p(y) = v(0) =: z.

Dann gibt es genau einen Weg 4 : I — Y mit 4(0) = y und po 4y = .

Beweis: Existenz: Siehe Abbildung 3.14.

Abbildung 3.14: Skizze fiir den Beweis von Satz 3.2

p: Y — X Uberlagerung, X,Y wegzusammenhingend. p stetig und surjektiv, zu x € X3
Umgebung U, so dass p~1(U) = JV;

p|V; : V; = U Homdéomorphismus.

Bemerkung 54
Wege in X lassen sich zu Wegen in Y liften.

Zu jedem y € p~!(v(0)) gibt es genau einen Lift von +.

Proposition 3.3
Seien p : Y — X eine Uberlagerung, a,b € X, 70,7 : I — X homotope Wege von a

nach b, @ € p~'(a), Jo, 71 Liftungen von vy bzw. v, mit 4;(0) = 0.
Dann ist ¥p(1) = v1(1) und 5o ~ 71.
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Beweis: Sei H : I x I — X Homotopie zwischen v und ~s.

Fir s € [0,1] sei vs: [ — X, t — H(t,s).
Sei v Lift von s mit ¥5(0) = a
Sei H:IxI—Y, H(ts):=(Jst),s)
Dann gilt:

(i) H ist stetig (Beweis wie fiir Bemerkung 53)

(i) H(t,0) = 7(t) = A(t,1) = (1)

) =75(0) =0
(iv) H(1,s) € p~'(b)

—
o
—
=
SN—
mz
— —~ —
o
)

Da p‘l(b) diskrete Teilmenge von Y ist
= H(1,s) = H(1,0) = bsVs € I
= by = by und H ist Homotopie zwischen ~y und ;.

Bemerkung 55
Sei p: Y — X eine Uberlagerung, zo € X, yo € p~ (o)

a) p1:m(Y,y0) — m(X,zg) ist injektiv
b) [m (X, z0) : pu(m1(Y,0))] = deg(p)
Beweis:

a) Sei 4 ein Weg in Y um yp und p.([7]) = e, also po§ ~ vy,

Nach Proposition 3.3 ist dann 4 homotop zum Lift des konstanten Wegs v,, mit

Anfangspunkt yo, also zu v, = [y] =€

b) Sei d = degp,p~(z0) = { Yo, V1,---,Ya_1 } Fiir einen geschlossenen Weg v in X um

xg sei 4 die Liftung mit 4(0) = yo.
¥(1) € { yo,--.,yq—1 } hdngt nur von [y] € (X, zg) ab.
Es gilt:

Yo(1) =7(1)
[’Yo * 71 1] € m(Y,%0)

Zuie{0,...,d—1} gibt es Weg §; in Y mit 6;(0) = yo und o;(1) = y;

= p x J; ist geschlossener Weg in X um x.
= 0; = P* (51
= Jedes y; mit i =0,...,d — 1 ist (1) fir ein [y] € m (X, zo)

Bemerkung 56
Sei p: Y — X Uberlagerung und X einfach zusammenhingend.

Dann ist p ein Hom6omorphismus.

Beweis: Wegen Bemerkung 55.a ist auch Y einfach zusammenhéngend und wegen Bemer-

kung 55.b ist deg(p) = 1, p ist also bijektiv.

1

Nach 12.2 ist p offen = p~" ist stetig.

B |Was
ist
das?
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Definition 49 ~ ~
Eine Uberlagerung p : X — X heift universell, wenn X einfach zusammenhéngend ist.

Beispiel 33
R — S, ¢+ (cos2nt,sin 27t)

R? — T2 = R%/72
S" — P*(R) fir n > 2

Satz 3.4
Sei p: X — X eine universelle Uberlagerung, ¢ : ¥ — X weitere Uberlagerung.

Sei 29 € X, % € X,yo € Y mit q(y1) = xo,p(20) = xo.

Dann gibt es genau eine Uberlagerung p: X — Y mit () = yo.

Beweis: Sei z € X,y, : I — X ein Weg von £ nach z.
Sei §z die Liftung von p o7y, nach y mit d2(0) = yp.
Setze p(z) = dz(1).
Da X einfach zusammenhingend ist, hingt P(2) nicht vom gewéhlten y, ab.
Offensichtlich ist ¢(p(z)) = p(2).

P ist stetig (in z € X). Sei W C Y offene Umgebung von p(z).

q offen q(W) ist offene Umgebung von p(Z) . d(ﬁ(z))

Sei U C q(W) offen wie in Definition 45 und V C ¢~ *(U) die Komp. die 5(z) enthilt.
O.B.d. A.seiVCW.

Sei Z :=p~Y(U). Fiir u € Z sei § ein Weg in Z von z nach u.

= vz * ¢ ist Weg von xy nach u
= p(u) €V

= Z Cp L (W)

= p ist stetig

Bemerkung 57 3 } }
Sind p: X — X und v : Y — X universelle Uberlagerungen, so sind X und Y homdomorph.

Beweis: Seien zg € X, 7y € X mit p(79) = zo und 4o € ¢~ (wg) C Y.
Nach Satz 3.4 gibt es genau eine Uberlagerung

f:X =Y mit f(zo) =Yy und go f=p

und genau eine Uberlagerung

g:Y — X mit g(4o) = @ und po g = ¢

Damit gilt: pogo f =qof=p,gofog=pog=gq. Also ist go f : X — X Lift von
p: X — X mit (go f)(zp) = 2p.
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Da auch id; diese Eigenschaft hat, folgt mit Bemerkung 52: go f =id¢. Analog fog =idy.
[ |

Die Frage, wann es eine universelle Uberlagerung gibt, beantwortet der folgende Satz:

Satz 3.5
Es sei X ein wegzusammenhangender topologischer Raum in dem jeder Punkt eine
Umgebungsbasis aus einfach zusammenhéngenden Mengen hat.

Dann gibt es eine universelle Uberlagerung.

Beweis: Seizg € X und X := { (z,[7]) | # € X,y Weg von z, nach z } undp: X — X, (z,[]) —
.

Die Topologie auf X ist folgende: Definiere eine Umgebungsbasis von (z, [y]) wie folgt: Es
sei U eine einfach zusammenhéngende Umgebung von x und

U=0U(x,[]) :={ (y,[y*a]) | y € U, Weg in U von x nach y }

p ist Uberlagerung: plg U — U bijektiv. p ist stetig und damit Pl ein Homéomorphismus.

Sind 71,v2 Wege von z nach x und 1 ~ 72, so ist U(z, [11]) N U(x, [y2]) = 0, denn: Ist
A1 % e~ 9 % @, S0 ist auch y1 ~ 7o. Also ist p eine Uberlagerung.

X ist einfach zusammenhingend: Es sei @ := (xg,e) und 7 : I — X ein geschlossener Weg
um 2.

Sei v 1= p(7).
Annahme: [7] # e
Mit Bemerkung 55.a folgt dann: [y] # e.

Dann ist der Lift von v nach Z mit Anfangspunkt @y ein Weg von 2y nach (zo, [y]). Wider-
spruch.

Definition 50
Es sei p: Y — X eine Uberlagerung und f: Y — Y ein Homdomorphismus.

f heifst Decktransformation von p :< po f = p.

Ist p eine Decktransformation und | Deck(Y/X)| = deg p, so heifit p regulér.

Bemerkung 58
a) Die Decktransformationen von p bilden eine Gruppe, die sog. Decktransformations-

gruppe Deck(p) = Deck(Y/X) = Deck(Y — X)
b) Ist f € Deck(Y/X) und f # id, dann hat f keinen Fixpunkt.
c) |Deck(Y/X)| < degp

d) Ist p eine regulire Decktransformation, dann gilt: Vo € X : Deck(Y/X) operiert
transitiv auf der Menge der Urbilder p~!(x).

Beweis:
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a) Es gilt:
e idy € DeckY/X,
e f,g €DeckY/X = po(fog)=(pof)og=pog= fog€DeckY/X
e f€DeckY/X = pof=p=pofl=(pofloft=po(fof)y=p=
f~' e DeckY/X
b) Die Menge
Fix(f)={yeY | fly) =y}

ist abgeschlossen als Urbild der Diagonale A C Y x Y unter der stetigen Abbildung
y+— (f(y),y). Aukerdem ist Fix(f) offen, denn ist y € Fix(f), so sei U eine Umgebung
von p(y) € X wie in Definition 45 und U C p~!(U) die Komponente, die y enthilt;
also p : V — U ein Homomorphismus. Dann ist W := f~1(V) NV offene Umgebung
von .

Fir z € Wist f(z) € V und p(f(2)) = p(z). Da p injektiv auf V ist, folgt f(z) = z,
d. h. Fix(f) # 0.

Da Y zusammenhéngend ist, folgt aus Fix(f) # 0 schon Fix(f) =Y, also f = idy.

c) Es sei 79 € X, deg(p) = d und p~!(x0) = {v0,...,y4_1 }. Fiir f € Deck(Y/X) ist
fo) ={wo,- - ya—1 }-

Zui€{0,...,d—1} gibt es hochstens ein f € Deck(Y/X) mit f(yo) = y1, denn ist
fwo) = g(yo), soist (¢~ — flyo = o, also nach Bemerkung 58.c g~' o f =idy.

Beispiel 34
1) p:R— St :Deck(R/SY) ={t—t+n|necZ}=Z

2) p:R2 = T2 : Deck(R?/T?) 27 x 7 = 7.
3) p: 5™ = P*(R) : Deck(¢g"/P™"(R)) ={x+— ta } =Z/2Z

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamen-
talgruppe herstellen:

Satz 3.6
Ist p: X — X eine universelle Uberlagerung, so gilt:

Deck(X/X) = 7 (X,z0) Vo€ X

Beweis: Wihle 7y € p~(z¢). Es sei p : Deck(Z/x) — m1(X, z0) die Abbildung, die f auf [p(7y)]
abbildet, wobei v ein Weg von #p nach f(2y) sei. Da & einfach zusammenhéngend ist, ist
7 bis auf Homotopie eindeutig bestimmt und damit auch p wohldefiniert.

e p ist Gruppenhomomorphismus: Seien f,g € Deck(X/X) = Ygof = Vg * 9(Vf) =
P(gor) = P(1g) * (P o g)(vr) = plg) # p(f)
——

=p

. .. . Satz 3.2 . Bem. Bemerkung 58.c
o pist injektiv: p(f) = e = p(s) ~ Yoo === V5 ~ Vi, = f(0) = o == s

f=ids.
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e p ist surjektiv: Sei [y] € m (X, zp), ¥ Lift von v nach & mit Anfangspunkt zy. Der
Endpunkt von 7 sei 27.

p ist reguldre Uberlagerung: Seien @y, #1 € X mit p(z) = p(#1). Nach Satz 3.4 gibt

es genau eine Uberlagerung p: X — X mit p = po p und p(Zp) = #1. Somit ist p eine
Decktransformation und damit p eine regulire Uberlagerung.
Da p regulire Uberlagerung ist, gibt es ein f € Deck(X/X) mit f(2g) = 27.
Aus der Definition von p folgt: p(f) = p(vf) =
|

Beispiel 35 (Bestimmung von 1 (S%))
p:R = St (cos2rt,sin 2nt) ist universelle Uberlagerung, da R zusammenhiingend ist.

Firn € Z sei f,, : R - R, t — t + n die Translation um n.
Es gilt: (po fn)(t) = p(fn(t)) =p(t) Vt € R, d. h. f, ist Decktransformation.

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere fiir ¢ = 0:
(cos(2mg(0)),sin(2mg(0))) = (p© 9)(0) = p(0) = (1,0)

Es existiert n € Z mit g(0) = n. Da auch f,(0) = 0+ n = n gilt, folgt mit Bemerkung 58.c
g = fn. Damit folgt:
Deck(R/SY) ={fu|n€Z} =7

Nach Satz 3.6 also m1(S!) = Deck(R/S!) = Z

3.4 Gruppenoperationen
Definition 51
Sei (G, -) eine Gruppe und X eine Menge.

Eine Gruppenoperation von G auf X ist eine Abbildung o:
o:GxX—>X, (g,2)—~g-x,

fiir die gilt:
a) lgox =2 VreX
b) (9-h)ox=go(hoxz) Vg,he GVzx e X

Beispiel 36
1) G=(Z,+),X =Rnz=x+n

2) G operiert auf X = G durch goh:=g-h
3) G operiert auf X = G durch goh :=g-h-g~!, denn
i) lgoh=1g-h-15' =h
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ii)
(g1-92)oh=(g1-92)-h-(g-g2)""
=g1-(g2-h-g5") 01"
=g10(g20h)
Definition 52
Sei G eine Gruppe, X ein topologischer Raum und o : G x X — X eine Gruppenoperation.

a) G operiert durch Homomorphismen, wenn fiir jedes g € G die Abbildung
mg: X =X x—g-X
ein Homoéomorphismus ist.
b) Ist G eine topologische Gruppe, so heifst die Gruppenoperation o stetig, wenn o :

G x X — X stetig ist.

Bemerkung 59
Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homéomorphismen.

Beweis: Nach Voraussetzung ist o|{ gyxx : X = X,z — gou stetig.

Die Umkehrabbildung zu my ist mg-1:

(mg-1 0 my)(z) = mg—1(my(z))
=My-1 (g o J")

=g to(goua)

Definition 51
=g g)ox

=lgox

Definition 51.a
=X

Beispiel 37
In Beispiel 36.1 operiert Z durch Homéomorphismen.

Bemerkung 60
Sei G eine Gruppe und X eine Menge.

a) Die Gruppenoperation von G auf X entsprechen bijektiv den Gruppenhomomorphismen
0:G — Perm(X) =Sym(X)={f:X — X | f ist bijektiv }

b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch
Homoéomorphismus den Gruppenhomomorphismen G — Homéo(X)

Beweis:

Sei o : G x X — X eine Gruppenoperation von G auf X. Dann sei o : G — Perm(X)
definiert durch o(¢)(X) =¢g-2 Vg e G,z € X, also o(g) = my.

o ist Homomorphismus: o(g1 - g2) = Mg,.go = Mg, © Mg, = 0(g1) © 0(g2), denn fiir z € X :
o(g91-92)(x) = (g1 g2) oz = g1 o (g2 0 x) = o(g1)(e(g2)(x)) = (e(g1) © 0(g2))(x)
Umgekehrt: Sei o : G — Perm(X) Gruppenhomomorphismus. Definiere o : G x X — X
durch goz = o(g)(x).
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z. 7. Definition 51.b:

g1o(g20z) = 0(g1)(g20)
= 0(g1)(0(g2)(x))

= (0(g1) © 0(92))(x)

ist Hom.
=T 0(g1 - go) (@)

=(g1-g2)0x

z. Z. Definition 51.a: 1g -z = o(1g)(z) = idx () = =, weil p Homomorphismus ist.

Beispiel 38
Sei X ein wegzusammenhéngender topologischer Raum, p : X — X eine universelle Uberla-
gerung, zo € X, Zp € X mit p(20) = xo.

Dann operiert 71 (X, xg) auf X durch Homéomorphismen wie folgt:

Fiir [y] € m (X, z0) und ¥ € X sei [y] o & = v % o(1) wobei 4 ein Weg von 2 nach Z in X
sei, 0 :=p(d) =pod.

Also: 0 ist ein Weg in X von xg nach z = p(%) und m die Liftung von v % § mit
Anfangspunkt .

[v] - Z hiangt nicht von der Wahl von 4 ab; ist 4/ ein anderer Weg von #y nach Z, so sind )
und 8" homotop, also auch v * 8 und ~ * & homotop.

Gruppenoperation, denn:
D) [Joi=exd=27
i) vrxv2%6(1) = [y1%72]0%
Y% v2 % 6(1) = [n1] o (y2 % 0)(1) = [n1] o ([v2] 0 7)

Erinnerung:Die Konstruktion aus Bemerkung 60 induziert zu der Gruppenoperation 71 (X, zg)
aus Beispiel 38 einen Gruppenhomomorphismus g : 71 (X, z9) — Homoo(X). Nach Satz 3.6 ist

o(m (X, x0)) = Deck(X /X)
= { f: X — X Homdbomorphismus ‘ po f :p}
Beispiel 39
Sei X := S? C R? und 7 die Drehung um die z-Achse um 180°.
g = (1) = {id, 7 } operiert auf S? durch Homéomorphismen.

Frage: Was ist S2/G? Ist S?/G eine Mannigfaltigkeit?



4 Euklidische und nichteuklidische
Geometrie

Definition 53
Das Tripel (X, d, G) heifft genau dann eine Geometrie, wenn (X, d) ein metrischer Raum

und ) # G C P(X) die Menge aller Geraden ist.

4.1 Axiome fur die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen

nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man
auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei
sein, die Axiome sollen mdoglichst unabhéngig sein und Vollstdndigkeit wire auch toll. Mit
Unabhéngigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten lasst. Dies scheint
auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch
einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhéngig von
den restlichen Axiomen ist, {iber 2000 Jahre nicht gelost wurde. Ein ganz anderes Kaliber ist
die Frage nach der Vollstandigkeit. Ein Axiomensystem gilt als Vollstdndig, wenn jede Aussage
innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gédelsche
Unvollstéandigkeitssatz, der z. B. fiir die Arithmetik beweist, dass nicht alle Aussagen formal
bewiesen oder widerlegt werden kénnen.

Kehren wir nun jedoch zuriick zur Geometrie. Euklid hat in seiner Abhandlung ,,Die Elemente*
ein Axiomensystem fiir die Geometrie aufgestellt.

Euklids Axiome
e Strecke zwischen je zwei Punkten
e Jede Strecke bestimmt genau eine Gerade
e Kreis (um jeden Punkt mit jedem Radius)

e Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)

e Parallelenaxiom von Euklid:
Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel zwei
Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden par-
allel sind und senkrecht auf die erste stehen.

Definition 54
Eine euklidische Ebene ist ein metrischer Raum (X, d) zusammen mit einer Teilmenge
) # G C P(X), sodass die Axiome §1 - §4 erfiillt sind:

o6
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§1) Inzidenzaxiome:
(i) Zu P # @Q € X gibt es genau ein g € G mit { P,Q } C g.
(ii) lg/>2 VgeG
(i) X ¢ G
§2) Abstandsaxiom: Zu P,Q, R € X gibt es genau dann ein g € G mit { P,Q, R } C g,
wenn gilt:
e d(P,R) =d(P,Q) + d(Q, R) oder
e d(P,Q) =d(P,R) + d(R,Q) oder
e d(Q,R)=d(Q,P)+d(P,R)

Definition 55
a) P,Q, R liegen kollinear, wenn es g € G gibt mit { P,Q,R } C g.

b) @ liegt zwischen P und R, wenn d(P, R) = d(P,Q) + d(Q, R)
c) Strecke PR :={(Q € X | Q liegt zwischen P und R}
d) Halbgeraden:

PR :={Q € X | Q liegt zwischen P und R oder R liegt zwischen P und Q }
PR™ :={Q € X | P liegt zwischen @ und R }

P R
........ @ v s
PR~ PR
PR*

Abbildung 4.1: Halbgeraden
Bemerkung 61
a) PRTUPR™ = PR

b) PRTN PR ={P}
Beweis:

(i) ,C“ folgt direkt aus der Definition von PRT und PR~
,2 Sel @ € PR = P,Q, R sind kollinear.
Q liegt zwischen P und R = @ € PR

2{R liegt zwischen P und Q = Q € PR
P liegt zwischen Q und R = @ € PR

(ii) ,,2“ ist offensichtlich
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»,C% Sei PRT N PR™. Dann ist d(Q, R) = d(P,Q) + d(P, R) weil Q € PR~ und

{ d(P,R) = d(P,Q) + d(Q, R) oder }
d(P,Q) = d(P, R) + d(R, Q)

=d(Q,R) =2d(P,Q) +d(Q,R)

=d(P,Q)=0

=P=qQ

d(P,Q) =2d(P,R) +d(P,Q)
=P=R

= Widerspruch

Definition 56
§3) Anordnungsaxiome

(i) Zu jedem P € X jeder Halbgerade H mit Anfangspunkt P und jedem r € R>
gibt es genau ein @ € H mit d(P,Q) =r.

(ii) Jede Gerade zerlegt X \ g = HyU Hy in zwei nichtleere Teilmengen Hy, Ho, sodass
fir alle A € H;, B€ H; miti,j € { 1,2} gilt: ABNg# 0 < i +#j.

Diese Teilmengen H; heifsen Halbebenen bzgl. g.
§4) Bewegungsaxiom: Zu P,Q, P',Q’' € X mit d(P,Q) = d(P’,Q"). Isometrien ¢1, ¢
mit @;(P) = P’ und ¢;(Q) = @Q',i = 1,2 (Spiegelung an der Gerade durch P und Q

ist nach Identifizierung von P = P’ und Q = @’ eine weitere Isometrie.)

§5) Parallelenaxiom: Fiir jedes g € G und jedes P € X \ g gibt es hochstens ein h € G
mit hNng=10."

Satz 4.1 (Satz von Pasch)
Seien P, Q, R nicht kollinear, g € G mit gN{ P,Q, R} = 0 und g N PQ # 0.

Dann ist entweder g N PR # () oder g N QR # 0.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke)
schneiden, auch eine weitere Seite scheiden.

Beweis: gNPQ # 0
(Sg)P und @ liegen in verschiedenen Halbebenen bzgl. g
= 0. B. d. A. R und P liegen in verschieden Halbebenen bzgl. g

=gNRP#(

Bemerkung 62
Sei P,@ € X mit P # (@ sowie A, B € X \ PQ mit A # B. Auferdem seien A und B in der
selben Halbebene bzgl. PQ sowie Q und B in der selben Halbenebe bzgl. PA.

Dann gilt: PBT N AQ # 0

Auch Bemerkung 62 ldsst sich Umgangssprachlich sehr viel einfacher ausdriicken: Die Diagonalen
eines konvexen Vierecks schneiden sich.

1 heifit Parallele zu g durch P
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Abbildung 4.2: Situation aus Bemerkung 62

Beweis: Sei P/ € PQ—, P # P ""2"" PB schneidet AP’ UAQ

Sei C der Schnittpunkt. Dann gilt:

(i) C € PB", denn A und B liegen in derselben Halbebene bzgl. PQ = P'Q, also auch
AP und AQ.

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das fiir @ gilt.
AP’ liegt in der anderen Halbebene bzgl. PA = C ¢ P’A= C € AQ
Da C € PB* und C € AQ folgt nun direkt: ) # { C'} € PBT N AQ |

Bemerkung 63
Seien P,@ € X mit P # Q und A, B € X\ PQ in der selben Halbebene bzgl. PQ. Auferdem
sei d(A, P) =d(B,P) und d(A, Q) = d(B, Q).

Dann ist A = B.

P

Abbildung 4.3: Bemerkung 63: Die beiden roten und die beiden blauen Linien sind gleich lang.
Intuitiv weifs man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch
Annahme: A # B

Dann ist B ¢ (PAUQA) wegen §2.
1. Fall: @ und B liegen in derselben Halbebene bzgl. PA

Beme?gulg 62 PB+ A m 7& @

Sei C der Schnittpunkt vom PB und AQ.
Dann gilt:



4.1. AXIOME FUR DIE EUKLIDISCHE EBENE 60

ety

N

P [N

(a) 1. Fall (b) 2. Fall

Abbildung 4.4: Fallunterscheidung aus Bemerkung 63

(i) d(A,C)+d(A,Q) =d(B,Q) <d(B,C)+d(C,Q) = d(A,C) < d(B,C)
(i) a) B liegt zwischen P und C.

d(P,A)+d(A,C) > d(P,C) =d(P,B)+d(B,c) =d(P,A)+d(B,C) = d(A,c) >
d(B,C) = Widerspruch zu Punkt (i)

b) C liegt zwischen P und B

d(P,C)+d(C,A) > d(P,A) =d(P,B) =d(P,C) +d(C, B)
= d(C,A) > d(C,B)
= Widerspruch zu Punkt (i)

2. Fall: @Q und B liegen auf verscheiden Halbebenen bzgl. PA.
Dann liegen A und @ in derselben Halbebene bzgl. PB.
Tausche A und B = Fall 1 |

Bemerkung 64
Sei (X, d,G) eine Geometrie, die §1 - §3 erfiillt und ¢ eine Isometrie mit p(P) = P und
p(@) = Q.

Dann gilt p(S) =S VS € PQ.

Beweis:
0.B.d. A.sei S € PQ & d(P,Q) =d(P,S) +d(S,Q) (4.1)
P G6(P), 0(Q)) = d(p(P), 9(S)) + d(e(S), 9(Q))  (4.2)
PO 4P, Q) = d(P,¢(8)) + d(9(S), Q) (4.3)
= ¢(9) liegt zwischen P und Q. Es gilt d(P, ¢(S)) = d(P,S5)
(4.4)
W) =5 (4.5)
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Proposition 4.2
In einer Geometrie, die §1 - §3 erfiillt, gibt es zu P, P, Q, Q" mit d(P,Q) = d(P',Q’)
hochstens zwei Isometrien mit p(P) = P’ und ¢(Q) = Q’

Aus den Axiomen folgt, dass es in den Situation §4 hochstens zwei Isometrien mit
pi(P) = P' und ¢;(Q) = Q' gibt.

Beweis: Seien @1, @2, p3 Isometrien mit p;(P) = P, ¢;(Q) =Q’, i =1,2,3
Beh.: (1) 3R € X \ PQ mit p1(R) = p2(R).
Beh.: (2) Hat ¢ 3 Fixpunkte, die nicht kollinear sind, so ist ¢ = idx.

Aus Beh. 1 und Beh. 2 folgt, dass goz_l o1 =idyx, also w3 = 1, da P, Q und R in diesem
Fall Fixpunkte sind.

Beweis:
Beh.: Sind P # @ Fixpunkte einer Isometrie, so ist ¢(R) = R fiir jedes R € PQ.

Beweis: (von Beh. 2 mit Bemerkung 64) Seien P, () und R Fixpunkte von ¢,
R € PGund A ¢ PQUPRUQR. Sei B € PQ\{P,Q}. Dann ist ¢(B) = B
wegen Bemerkung 64.

Bemerkung 64
=

Ist R € AB, so enthélt AB 2 Fixpunkte von ¢ p(A) = A.

A

P 3\ é\
Abbildung 4.5: P,Q, R sind Fixpunkte, B € PQ\{P,Q}, A¢ PQUPRUQR

Ist R ¢ AB,soist ABNPR # () oder AB € RQ # () nach Satz 4.1. Der Schnittpunkt
C ist dann Fixpunkt von ¢’ nach Bemerkung 64 = ¢(A) = A.

Beweis: (von Beh. 1) Sei R € X \ PQ. Von den drei Punkten ¢1(R), p2(R), p3(R)
liegen zwei in der selben Halbebene bzgl. P'Q’ = ¢;(PQ).

O. B. d. A. seien ¢1(R) und p2(R) in der selben Halbebene.

Es gilt:
d(P', p1(R)) = d(p1(P), p1(R)) (4.6)
=d(P,R) (4.7)
= d(p2(P), p2(R)) (4.8)
= d(P', p2(R)) (4.9)
=d(Q', v2(R)) (4.10)

und analog d(Q', p1(R)) = d(Q', p2(R))
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Bemerkung 65
Mit 63 lassen sich die Kongruenzsatze fiir Dreiecke, wie man sie aus der Schule kennt,
beweisen.

Proposition 4.3
Sei (X, d,G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jedem g € G und jedem P € X \ g ein h € G mit P € h und g N h # (.

Abbildung 4.6: Situation aus Proposition 4.3

Beweis: Sei f € G mit P € f. Ist fNg=10, so setze h := f. Andernfalls sei { Q } :== fNg.

Sei ¢ die eindeutige Isometrie mit (Q) = P, ¢(P) = P’, die die Halbebenen bzgl. f nicht
vertauscht.

Setze h := (g).
Z.7..hng=70.
Andernfalls sei { R} =hnNyg.

Bemerkung 66
Jeder Innenwinkel eines Dreiecks ist kleiner als alle nicht-anliegenden Auftenwinkel.

Beweis: Sei ¢ die Isometrie, die @ auf P und P auf P’ mit P’ € f,d(P, P") = d(P, Q) abbildet
und die Halbebenen bzgl. f erhilt.

Beh.: (Herz) ¢(g)Ng=10

Beweis: Ist ¢(g) Ng # 0, so ist R der Schnittpunkt.

Q2 P

Abbildung 4.7: Skizze zu Behauptung 4
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Definition 57
a) Ein Winkel ist ein Punkt P € X zusammen mit 2 Halbgeraden mit Anfangspunkt P.
Man schreibt: Z/R; PRy bzw. /RyPR;?

b) Zwei Winkel sind gleich, wenn es eine Isometrie gibt, die den einen Winkel auf den
anderen abbildet.

¢) ZR}P'R heifit kleiner als ZR; PRy, wenn es eine Isometrie ¢ gibt, mit ¢(P) = P/,
¢(PR}+) = P'R1+ und ¢(R)) liegt in der gleichen Halbebene bzgl. PRy wie Ry und
in der gleichen Halbebene bzgl. PRy wie R

d) Im Dreieck APQR gibt es Innenwinkel und Aufenwinkel.

°
Ry
(a) LR|P'Rj ist kleiner als ZR1 PR (b) und AuRenwin-

vgl. Definition 57.c kel in APQR, vgl. Definiti-

on 57.d

Abbildung 4.8: Situation aus Definition 57

Bemerkung 67
In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Aufsenwinkel.

Abbildung 4.9: Situation aus Bemerkung 67

Beweis: Zeige ZPRQ < ZRQP'.
Sei M der Mittelpunkt der Strecke QR. Sei A € M P~ mit d(P, M) = d(M, A).

2Fiir dieses Skript gilt: ZR1 PRy = ZR2PR;. Also sind insbesondere alle Winkel < 180°.
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Es gilt: d(Q, M) = d(M,R) und d(P, M) = d(M, A) sowie ZPMR = ZAMQ = AMRQ
ist kongruent zu AAMQ, denn eine der beiden Isometrien, die Z/PM R auf ZAM () abbildet,
bildet R auf QQ und P auf A ab.

=/ MQA=/MRP = /QRP = /PRQ.
Noch zu zeigen: /MQA < ZRQP’, denn A liegt in der selben Halbebene bzgl. PQ wie M.

Beweis: (von Proposition 4.3) Wire ¢(g) nicht parallel zu g, so gébe es einen Schnitt-
punkt R. Dann ist ZQPR < ZRQP~ nach Bemerkung 67 und ZQPR = ZRQP~, weil
©(LRQP") = ZRPQ

Folgerung 4.4
Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als 7, d. h. es gibt eine Isometrie
e mit p(Q) = P und p(QP1) = PR, sodass ¢(R) in der gleichen Halbebene bzgl. PQ
liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Aufienwinkeln ist 7, d. h. die
beiden Halbgeraden bilden eine Gerade.

Abbildung 4.10: In der sphérischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie,
Dreiecke mit drei 90°-Winkeln.

Proposition 4.5
In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der
Innenwinkel < 7.

Sei im Folgenden ,JWS* die ,Innenwinkelsumme*.
Beweis: Sei A ein Dreieck mit IWS(A) =7 +¢
Sei « ein Innenwinkel von A.
Beh.: Es gibt ein Dreieck A" mit IWS(A') = IWS(A) und einem Innenwinkel o/ < §.

Dann gibt es fiir jedes n ein A, mit IWS(A,) = IWS(A) und Innenwinkel o < 7. Fiir
5w < € ist dann die Summe der beiden Innenwinkel um A,, gréfer als 7 = Widerspruch
zu Folgerung 4.4.
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c D
,
a (8]
A B
(a) Summe der Winkel «, 8 und ~ (b) Situation aus Proposition 4.5

Abbildung 4.11: Situation aus Proposition 4.5

Beweis: (der Behauptung) Sei M der Mittelpunkt RC und A’ € M A~ mit d(A’, M) =
d(A,M) = A(MA'C) und A(MAB) sind kongruent. = ZABM = ZA'CM und
LMAC =/ZMAB. = a+ 3+ =IWS(AABC) = IWS(AAA'C) und ag + ag = a,
alsoo. B.d. Aoy < §

Bemerkung 68
In einer euklidischen Ebene ist in jedem Dreieck die Innenwinkelsumme gleich 7.

Abbildung 4.12: Situation aus Bemerkung 68

Beweis: Sei g eine Parallele von AB durch C.
e Es gibt o/ = a wegen Proposition 4.3.
e Es gibt 3/ = 8 wegen Proposition 4.3.
e Es gibt o” = o/ wegen Aufgabe 6.
= IWS(AABC) =~vy+d"+ 0 =7

4.2 Weitere Eigenschaften einer euklidischen Ebene

4.2.1 Strahlensatz

Satz 4.6
In dhnlichen Dreiecken sind Verhéltnisse entsprechender Seiten gleich.

Beweis: TODO
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—0

A2z

P )

-1 0

3

4T

Abbildung 4.13: Strahlensatz

Abbildung 4.14: Die Dreiecke AABC und AAB’C’ sind ahnlich.
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4.2.2 Flacheninhalt

Definition 58
,Simplizialkomplexe® in euklidischer Ebene (X, d) heiffen flichengleich, wenn sie sich in
kongruente Dreiecke zerlegen lassen.

L2707 077027222727772227727727777

(a) TODO (b) TODO

Abbildung 4.15: Fliachengleichheit

Der Fliacheninhalt eines Dreiecks ist 1/2 - Grundseite - Hohe.

TOPO

Abbildung 4.16: Flachenberechnung im Dreiecks

Zu zeigen: Unabhéngigkeit von der gewahlten Grundseite.

7,77
TN 0000000000000007
77 277777777777777777 74277277

A Ic B

Abbildung 4.17: AABL, und ACL¢B sind dhnlich, weil IWS =7

Strahlensat
TR L =L s ahg=ch
c a

Satz 4.7 (Satz des Pythagoras)
Im rechtwinkligen Dreieck gilt a® + b> = ¢2, wobei ¢ die Hypothenuse und a, b die beiden
Katheten sind.

Beweis: (a+b)-(a+b)=a’+2ab+b*=c?+4- (3 a-b)
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a

A ¢ B b a

(a) a,b sind Katheten und c ist die Hypo- (b) Beweisskizze
thenuse

Abbildung 4.18: Satz des Pythagoras

Satz 4.8
Bis auf Isometrie gibt es genau eine euklidische Ebene, nimlich X = R? d =
euklidischer Abstand, G = Menge der iiblichen Geraden.

Beweis:
(i) (R?, dgukiq) ist offensichtlich eine euklidische Ebene.

(ii) Sei (X,d) eine euklidische Ebene und g;, g2 Geraden in X, die sich in einem Punkt
0 im rechten Winkel schneiden. Sei X der Fufpunkt des Lots von P auf g; (vgl.
Aufgabe 7 (c)).

Sei Y der Fufspunkt des Lots von P auf go.
Setze h(P) := (zp,yp) mit zp := d(X,0) und yp := d(Y,0).

Dadurch wird h : X — R? auf dem Quadranten definiert, in dem P liegt (d. h.
VQ € X mit PQ Ng; = 0 = PQ N gy) Fortsetzung auf ganz X durch konsistente
Vorzeichenwahl.

Beh.: (1) h ist surjektiv
Beh.: (2) h ist abstandserhaltend (— injektiv)

Beweis: (von 1) Sei (z,y) € R% z. B. 2 > 0,y > 0. Sei P’ € g; mit d(0,P') = x
und P’ auf der gleichen Seite von go wie P.

Beweis: (von 2) Zu Zeigen: d(P,Q) = d(h(P),h(Q))

o Pythagoras

d(P,Q)
h(Q) = (2, yq)

d(Pa R)2 + d(R7 Q)2 = (yQ - yP)2 =+ (:EQ - :EP)Z'
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92 g2
X X
P
°
P yp
g1 0 xp g1
(a) Schritt 1 (b) Schritt 2

Abbildung 4.19: Beweis zu Satz 4.8

4.3 Hyperbolische Geometrie

Definition 59
Sei

H::{ZEC]S(,Z)>0}:{(;r,y)€R2‘y>()}
die obere Halbebene bzw. Poincaré-Halbebene und G = G1 U Go mit

Gi={gn CH|ImeR,reRyg:g1={z€C:|z—m|=r}}
Go={gCH|IrceR: gg={2€C:R(z)=x}nH}

Die Elemente von H heifsen hyperbolische Geraden

Bemerkung 69 (Eigenschaften der hyperbolischen Geraden)
Die hyperbolischen Geraden erfiillen. ..

a) ...die Inzidenzaxiome §1
b) ...das Anordnungsaxiom §3 (ii)

¢) ...nicht das Parallelenaxiom §5

Beweis:

a) Offensichtlich sind §1 (iii) und §1 (ii) erfillt. Fur §1 (i) gilt:
Gegeben z1, 20 € H
Existenz: R(z1) = R(z2) = 21 und 29 liegen auf

g={2z€C|R(z)=R(z) \H}

b) TODO
c) Siehe Abbildung 4.22.
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92
X
P T
yp
0 Tp 91
(a) Schritt 1 (b) Schritt 2 (Bild 13)

Abbildung 4.20: Beweis zu Satz 4.8

Proposition 4.9
a) Die Gruppe SLa2(R) operiert auf H durch

(2) = a b . __az+b
o(z) := e d z'_icz—l—d

b) Esist o(z) = (—0)(2) fiir alle o € SLy(R) und z € H. Daher operiert PSLy(R) =
SL2 (R)/(:tf) auf H.

¢) PSLy(R) operiert auf R U { oo }. Diese Gruppenoperation ist 3-fach transitiv, d. h.
zu o < 1 < Too € R gibt es genau ein 0 € PSLa(R) mit o(zg) =0, o(x1) =1,
0(Zso) = 00

d) SLy(R) wird von den Matrizen
A0 1 a 0 1
(0 )\1> AER <0 1) a€R (-1 0)
erzeugt

e) PSLy(R) operiert auf G

Beweis:

a) Sei z =z +1iy € H, d. h.y>0unda:<i Z) € SLy(R)
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Y, Y
4 4
3 1 Z2 3\ N
2 2 2 N 7Dy,
1 1 "Zl \\‘ ‘\\
—0 \ | A A — —0—+ t t \‘\%\ t t -
-1 0 1 9 3 4 5 -1 0 1 2 3~ 4 5
(a) Fall 1 (b) Fall 2

Abbildung 4.21: Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer
Geraden

_=5 x
Abbildung 4.22: Hyperbolische Geraden erfiillen §5 nicht.
_ar+aiy+b
=o0(z) = P —I (4.11)
_ax+aiy+b'cx—|—d—z'y (4.12)
e H4ciy+d cx+d—iy ’
R(...) +i(aycr + ayd — axy — yb)
= ; . (4.13)
(cx +d)? + (cy)
_ R(...) +i(ad — be)y (4.14)
(cx +d)? + (cy)? ’
sLe(®)  R(...) + iy
= 4.15
(cx 4+ d)? + (cy)? (4.15)
= Q(o(z)) = 7(Cz+d)§/+(cy)2 >0
b) TODO b)

. a b +b !
¢) Ansatz: o = e d o(z0) = g =0=azo+b=0=b= —axg

0(Too) =00 = CToo+d=0=d=—2c
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olx1)=1=ax;+b=cr1+d
a(x) — xg) = c(r] — Too) = ¢ = a2=20

T1—Too
_ 2, Tr1—x0 2 r1—x0 __
= 2a Too iy T 0 xoizr%% =1
Z1=T0 _ -1 - T1—Too
= a7 (0 — Too) =a T (e=70)

d) TODO d)
e) Es geniigt die Aussage fiir Matrizen aus Proposition 4.9 (d) zu zeigen.

A0
0 At
Abbildung 4.23a und Abbildung 4.23b dargestellt sind.

o0 = , also o(z) = A2z. Daraus ergeben sich die Situationen, die in

)
3 A2z
Yy
3+ 2 V4
27 1
m —+ 4
11 —0 . T A . R
—(— — x
S A S T T 1/6 1 2 3 4
(a) Fall 1 (b) Fall 2 (Strahlensatz)

Abbildung 4.23: Beweis von Proposition 4.9 (e) fiir eine Diagonalmatrix

o Offensichtlich gilt die Aussage fiir o = <é 61L>

. 0 1 .
e Seinun o = (_1 0), also 0(z) = —+

Y

Abbildung 4.24: Inversion am Kreis
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Ubungsaufgaben

Aufgabe 6

Seien (X, d) eine absolute Ebene und P, @, R € X Punkte. Der Scheitelwinkel des Winkels
/ZPQR ist der Winkel, der aus den Halbgeraden QP~ und QR~ gebildet wird. Die

Nebenwinkel von ZPQR sind die von QPT und QR~ bzw. QP~ und QR™ gebildeten
Winkel.

Zeigen Sie:
(a) Die beiden Nebenwinkel von ZPQR sind gleich.
(b) Der Winkel ZPQR ist gleich seinem Scheitelwinkel.

Aufgabe 7

Sei (X, d) eine absolute Ebene. Der Abstand eines Punktes P zu einer Menge Y C X von
Punkten ist definiert durch d(P,Y) :=infd(P,y)ly € Y.

Zeigen Sie:

(a) Ist AABC ein Dreieck, in dem die Seiten AB und AC kongruent sind, so sind die
Winkel ZABC und /BC A gleich.

(b) Ist AABC ein beliebiges Dreieck, so liegt der langeren Seite der grofere Winkel
gegeniiber und umgekehrt.

(c) Sind g eine Gerade und P ¢ g ein Punkt, so gibt es eine eindeutige Gerade h mit
P € h und die g im rechten Winkel schneidet. Diese Grade heifit Lot von P auf g
und der Schnittpunkt des Lots mit g heilst LotfufSpunkt.

Aufgabe 8

Seien f, g, h € G und paarweise verschieden.

Zeigen Sie: f|[gAg||h=f| R

Aufgabe 9

Beweise den Kongruenzsatz SSS.



Losungen der Ubungsaufgaben

LGésung zu Aufgabe 1

Teilaufgabe a) Es gilt:
(i) 0,X € Tx.

(ii) Tx ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt fiir alle Uy, Uy €
Tx:U1NU; € Tx.

(iii)) Auch unter beliebigen Vereinigungen ist Tx abgeschlossen, d. h. es gilt fiir eine
beliebige Indexmenge I und alle U; € Tx fiir allei € I : (J,c; Ui € Tx

Also ist (X, Tx) ein topologischer Raum.

Teilaufgabe b) Wihle x = 1,y = 0. Dann gilt « # y und die einzige Umgebung von x
ist X. Day =0 € X konnen also z und y nicht durch offene Mengen getrennt werden.
(X, Tx) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 4 sind metrische Radume hausdorffsch. Da (X, T x) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X, Tx)
kein metrischer Raum sein kann.

LGésung zu Aufgabe 2

Teilaufgabe a)
Beh.: Va € Z: { a } ist abgeschlossen.
Sei a € Z beliebig. Dann gilt:

Teilaufgabe b)

Beh.: { —1,1 } ist nicht offen
Bew.: durch Widerspruch
Annahme: { —1,1 } ist offen.

Dann gibt es T' C B, sodass (Jy;er M = { —1,1 }. Aber alle U € B haben unendlich viele
Elemente. Auch endlich viele Schnitte von Elementen in ‘B haben unendlich viele Elemente
= keine endliche nicht-leere Menge kann in dieser Topologie offen sein = { —1,1 } ist
nicht offen. |

Teilaufgabe c)

Beh.: Es gibt unendlich viele Primzahlen.
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Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen p € P

Dann ist N
FS d. Arithmeti
ZA{ =11 R Uy
peP
endlich. Das ist ein Widerspruch zu |Z| ist unendlich und |{ —1,1 } | ist endlich. [ |

Losung zu Aufgabe 3

(a) Beh.: Die offenen Mengen von P sind Vereinigungen von Mengen der Form

Hij H P,

jeJ €N, i£j
wobei J C N endlich und U; C P; offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form

HUj X HB, wobei J C N endlich und U; C Pjoffen Vj € J
1€J ieN

idJ

eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen
von Mengen der obigen Form. ]

(b) Beh.: Die Zusammenhangskomponenten von P sind alle einpunktig.

Beweis: Es seinen z,y € P und z sowie y liegen in der gleichen Zusammenhangs-
komponente Z C P. Da Z zusammenhangend ist und Vi € I : p; : P — P; ist
stetig, ist p;(Z) C P; zusammenhéngend fiir alle ¢ € N. Die zusammenhéngenden
Mengen von P; sind genau {0} und {1}, d. h. fir alle ¢ € N gilt entweder
pi(Z) C{0} oder p;(Z) C{1}. Esseiz €{0,1} so, dass p;(Z) C { z } fir
alle ¢ € N. Dann gilt also:

pi(x) =z =pi(y) Vi € N
—— ——

=T; =Yi

Somit folgt: x =y ]

LGésung zu Aufgabe 4

(a) Beh.: GL,(R) ist nicht kompakt.
Bew.: det : GL,(R) — R\ {0} ist stetig. Auferdem ist det(GL,(R)) =R\ {0}

nicht kompakt. = GL,(R) ist nicht kompakt. [ |
(b) Beh.: SL;(R) ist nicht kompakt, fir n > 1 ist SL,(R) kompakt.

Bew.: Fiir SL; (R) gilt: SLi(R) = { A € R | det A =1} = (1) = {1}. 2 SLy(R)
ist kompakt.



Lésungen der Ubungsaufgaben 76

SL,(R) € GL,(R) lasst sich mit einer Teilmenge des R" identifizieren. Nach Satz 1.1
sind diese genau dann kompakt, wenn sie beschriankt und abgeschlossen sind. Definiere

nun fiir fir n € N>9,m € N: A4, = diag,,(m, %, ...,1). Dann gilt: det A,,, = 1, d. h.
Ay € SL,(R), und A4,, ist unbeschrankt, da || Ay, ||cc = m —— 0. [ |
m—0o0

(c) Beh.: P(R) ist kompakt.
Bew.: P(R) = 5" /;~_z. Per Definition der Quotiententopologie ist die Klassenabbil-
dung stetig. Da S™ als abgeschlossene und beschrinkte Teilmenge des R™*! kompakt

ist 2 P(R) ist kompakt. [

LGésung zu Aufgabe 5

(a) Vor.: Sei M eine topologische Mannigfaltigkeit.
Beh.: M ist wegzusammehéngend < M ist zusammenhéngend

Beweis: ,,=“ Da M insbesondere ein topologischer Raum ist folgt diese Richtung
direkt aus Bemerkung 24.

,<=" Seien x,y € M und
Z :={z¢€ M |3IWeg von z nach z }

Es gilt:

(i) Z # 0, da M lokal wegzusammenhéngend ist

(ii) Z ist offen, da M lokal wegzusammenhéngend ist
(iii) Z¢ :={% € M | $Weg von z nach Z } ist offen

Da M eine Mannigfaltigkeit ist, existiert zu jedem z € Z¢ eine offene und
wegzusammenhingende Umgebung U; C M.

Es gilt sogar Uz C Z, denn giibe es ein Uz 3 Z € Z, so gibe es Wege 73 :
[O) 1] — M772(0) = 27’72(1) =z und A [07 1] - M;’YI(O) = 57’)’1(1) =z
Dann wére aber

71 (2x) falls 0 < x <
Yo (22 — 1) falls % <zr<l1

N =

v:[0,1] = M, 7(33):{

ein stetiger Weg von Z nach x = Widerspruch.

Da M zusammenhéngend ist und M = Z U Z%  sowie Z # 0 folgt Z€ = 0.
T~

) . offen  offen
Also ist M = Z wegzusammenhéngend. [ |

(b) Beh.: X ist wegzusammenhéngend.

Beweis: X := (R\{0})U{03,02 } und (R\{0})U{02} sind hombomorph zu R.
Also sind die einzigen kritischen Punkte, die man nicht verbinden kénnen kénnte
01 und 0.

Da (R\{0})U{0; } homéomorph zu R ist, exisitert ein Weg ~; von 0; zu einem
beliebigen Punkt a € R\ {0 }.
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Da (R\ {0})U{02} ebenfalls homdomorph zu R ist, existiert aufserdem ein
Weg 2 von a nach 0. Damit existiert ein (nicht einfacher) Weg 7 von 0; nach
02. |

Losung zu Aufgabe 8

Sei f||hund o. B.d. A. f | g.

fHh= fNh+#0,seialsox e fNh Mit Axiom §5 folgt: Es gibt hochstens eine Parallele
zu g durch z, da ¢ g. Diese ist f, da x € f und f || g. Da aber € h, kann h nicht
parallel zu g sein, denn ansonsten gibe es zwei Parallelen zu g durch x (f # h). =gt h R

Losung zu Aufgabe 9

Seien AABC und AAB'C’ Dreiecke mit
d(A,B) =d(A', B

d(B,C) = d(B,C")
d(C, A) = d(C", A)

Dann existiert nach §4 genau eine Isometrie ¢ mit ¢(A) = A’,p(B) = B’ und ¢(C) €
A'B'C'.
Da d(A',C") = d(A,C) = d(p(A), ¢(C)) = d(A', ¢(C)) und d(B', C") = d(B', o(C))
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Symbolverzeichnis

Mengenoperationen

A®  Komplement der Menge A
P(M) Potenzmenge von M

M  Abschluss der Menge M

OM  Rand der Menge M

M?° Inneres der Menge M

A x B Kreuzprodukt zweier Mengen
A C B Teilmengenbeziehung

A C B echte Teilmengenbezichung
A\ B Aohne B

AUB Vereinigung

AUB Disjunkte Vereinigung
ANB Schnitt

Zahlenmengen

N Natiirliche Zahlen ({1,2,3,...})

Z  Ganze Zahlen (NU{0,—1,-2,...})
Q Rationale Zahlen (Z U { %, %, % })

R Reele Zahlen (QU { V2,33, .. })
R* Echt positive reele Zahlen

R* Einheitengruppe von R (R\ {0})

C Komplexe Zahlen ({ a +ib|a,b € R })
P Primzahlen (2,3,5,7,...)

H obere Halbebene ({ z€ C| Sz >0})
Geometrie

AB  Gerade durch die Punkte A und B
AB  Strecke mit Endpunkten A und B
AABC Dreieck mit Eckpunkten A, B, C

Gruppen

Homoo(X)
Iso(X) Isometriengruppe

GL,(K) Allgemeine lineare Gruppe (ge-
neral linear group)

SL,(K) Spezielle lineare Gruppe
PSL,(K) Projektive lineare Gruppe
Perm(X) Permutationsgruppe

Sym(X) Symmetrische Gruppe

Homdéomorphismengruppe

Weiteres

B Basis einer Topologie
Bs(x) o0-Kugel um z
% Topologie

P Projektiver Raum
(-,-) Skalarprodukt
X/~ X modulo ~
(2]~
]
]

Aquivalenzklassen von z bzgl. ~
Norm von
Betrag von x

STL
Tn

Sphére
Torus

Homotopieklasse eines Weges ~
mx  Projektion auf X

flu  f eingeschrankt auf U

f~Y(M) Urbild von M

Rg(M) Rang von M

X(K) Euler-Charakteristik von K
AF  Standard-Simplex

X#Y  Verklebung von X und Y
Zusammenhéngen von Wegen

]

Y1 *72
f:S'"<— R? Einbettung der Kreislinie in die Ebene
m1(X,z) Fundamentalgruppe im topologischen Raum X um z € X

Fix(f)

Menge der Fixpunkte der Abbildung f
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Stichwortverzeichnis

Abbildung
differenzierbare, 26
homotope, 43
offene, 45
simpliziale, 30
stetige, 8

abgeschlossen, 2

Abschluss, 3

Abstand, 73

Abstandsaxiom, 57

Achterknoten, 18

Aktion, siehe Gruppenoperation

Anordnungsaxiome, 58

Atlas, 21

Axiom, 56

Axiomensystem, 56

Basis, 3

Baum, 33
Belit-Zahl, 35
Bewegungsaxiom, 58

Cantorsches Diskontinuum, 20
C*-Struktur, 26

Decktransformation, 51
reguldre, 51

Decktransformationsgruppe, 51

dicht, 3

Diffeomorphismus, 26

Dimension, 30

diskret, 46

Ebene

euklidische, 56
einfach zusammenhéngend, 42
Euler-Charakteristik, siehe Eulerzahl
Eulersche Polyederformel, 34
Eulerzahl, 32

Farbbarkeit, 19
Faser, siehe Urbild
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Flache
regulére, 26
Fundamentalgruppe, 41

Geometrie, 56
Gerade, 56
hyperbolische, 69
Graph, 32
Grenzwert, 7
Gruppe
topologische, 29
Gruppenaktion, siehe Gruppenoperation
Gruppenoperation, 53, 53-55
stetige, 54

Halbebene, 58

Halbgerade, 57
Hilbert-Kurve, 17
Homo6omorphismengruppe, 9
Homdéomorphismus, 8
Homotopie, 38
Homotopiegruppe, 35
Homotopieklasse, 41

Inneres, 3
Inzidenzaxiome, 57
Isotopie, 18

Jordankurve, 17
geschlossene, 17

Karte, 21
Kartenwechsel, 24
Kern

offener, 3
Kleeblattknoten, 18
Klumpentopologie, siche triviale Topologie
Knoten, 18, 16-19

dquivalente, 18

trivialer, 18
Knotendiagramm, 18
kollinear, 57
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kompakt, 13
kongruent, siehe isometrisch

Kongruenz, siehe Isometrie
Kreis, 32

Lage

allgemeine, 29
Lie-Gruppe, 29
liegt zwischen, 57
Liftung, 47
Limes, 7
Lot, 73
Lotfufspunkt, 73

Mannigfaltigkeit, 21
differenzierbare, 25
glatte, 25
mit Rand, 24

Metrik, 5
diskrete, 6
SNCF, 6

Nebenwinkel, 73
Neilsche Parabel, 24

offen, 2
Oktaeder, 30

Parallelenaxiom, 56
Polyzylinder, 16
Produkttopologie, 4
Projektion
stereographische, 9

Quotiententopologie, 4

Rand, 3, 24
Raum
hausdorffscher, 7
metrischer, 5
projektiver, 5, 20, 21, 45
topologischer, 2
Realisierung
geometrische, 30

Scheitelwinkel, 73
Seite, 30
Sierpinskiraum, 3, 20
Simplex, 30
Simplizialkomplex, 30
Simplizialkomplexe
flachengleiche, 65

Sphére
exotische, 26
Spurtopologie, 3
Standard-Simplex, 30
Standardtopologie, 2
sternférmig, 41
Stetigkeit, 8-10
Strecke, 57
Struktur
differenzierbare, 26
Subbasis, 3

Teilraum, 3
Teilsimplex, 30
Topologie
diskrete, 2, 6
euklidische, 2
triviale, 2
Zariski, 2, 11, 13
Torus, ii
Total Unzusammenhéngend, 75

Uberdeckung, 13
Ubergangsfunktion, siehe Kartenwechsel
Uberlagerung, 45, 44-53
universelle, 49
Umgebung, 3

Verklebung, 23
vertréglich, 26

Wiirfel, 30
Weg, 16
einfacher, 16
geschlossener, 16
homotope, 38
zusammengesetzter, 40
Wegzusammenhang, 16
Winkel, 63

zusammenhéngend, 11
Zusammenhang, 11-12
Zusammenhangskomponente, 12
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