
1

Software Engineering Basics

Martin Thoma

14. August 2018

Martin Thoma | Software Engineering Basics



2
Intended Audience

Software is written by people with different backgrounds and
strengths. Not everybody has a Software Engineering background.
Those slides should help you to get the basics.

Martin Thoma | Software Engineering Basics



3
Alice and Bob

I Project: Build self-driving
car

I Alice is in the US, Bob in
Germany

Martin Thoma | Software Engineering Basics



4

Project structure

bin
docs
awesome_project
tests
setup.py
tox.ini

: $ grep -rnIi foobar

Details on my blog.

Martin Thoma | Software Engineering Basics

https://martin-thoma.com/python-projects/


5

git workflow

1. $ git clone repostory.git

2. $ git add filename

3. $ git commit

4. $ git push

Martin Thoma | Software Engineering Basics



5

git workflow

1. $ git clone repostory.git

2. $ git add filename

3. $ git commit

4. $ git push

Martin Thoma | Software Engineering Basics



6

Version Control: git

Martin Thoma | Software Engineering Basics



7

git log

Martin Thoma | Software Engineering Basics



8

git blame

Martin Thoma | Software Engineering Basics



9

git status

Martin Thoma | Software Engineering Basics



10

We read code MUCH more often than
we write it.

Martin Thoma | Software Engineering Basics



11

git

Problem: Dirty commit history due to bugs / fixes

Martin Thoma | Software Engineering Basics



12

Auto formatting

I PRs should not be about simple code style

I Choose one style guide and stick to it
I Trailing spaces are just noise - make your editor remove them

automatically.

Martin Thoma | Software Engineering Basics

https://martin-thoma.com/python-style-guide/


12

Auto formatting

I PRs should not be about simple code style
I Choose one style guide and stick to it

I Trailing spaces are just noise - make your editor remove them
automatically.

Martin Thoma | Software Engineering Basics

https://martin-thoma.com/python-style-guide/


12

Auto formatting

I PRs should not be about simple code style
I Choose one style guide and stick to it
I Trailing spaces are just noise - make your editor remove them

automatically.

Martin Thoma | Software Engineering Basics

https://martin-thoma.com/python-style-guide/


13

The Zen of Python, by Tim Peters (1)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

Martin Thoma | Software Engineering Basics



14

The Zen of Python, by Tim Peters (2)

In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

Martin Thoma | Software Engineering Basics



15

commit messages

I Can I understand what the
commit was about?

I Use prefixes
I Mention issues

cleanup, fixed bug, new feature,
. . .

Martin Thoma | Software Engineering Basics



15

commit messages

I Can I understand what the
commit was about?

I Use prefixes

I Mention issues

I BUG: bug fix
I DEV: development tool or

utility
I DOC: documentation
I ENH: Enhancement, a new

feature
I MAINT: Maintenance task
I REL: release
I STY: Stylistic change
I TST: addition or

modification of tests

Source: Scipy Development
Workflow

Martin Thoma | Software Engineering Basics

https://docs.scipy.org/doc/numpy-1.13.0/dev/gitwash/development_workflow.html
https://docs.scipy.org/doc/numpy-1.13.0/dev/gitwash/development_workflow.html


15

commit messages

I Can I understand what the
commit was about?

I Use prefixes
I Mention issues

I See issue #123
I Closes issue #123

Martin Thoma | Software Engineering Basics



16

commit squashing

Commit squashing
Making multiple commits in a
row become one

Image source:
stevenschwenke.de

Martin Thoma | Software Engineering Basics

https://stevenschwenke.de/GitToSquashOrNotToSquash


17

git merge

Martin Thoma | Software Engineering Basics



18

git merge vs git rebase

Image source: Jeff Kreeftmeijer
Martin Thoma | Software Engineering Basics

https://jeffkreeftmeijer.com/git-rebase/


19

Logic Bugs: Functions and McCabe

1 from math import ceil
2

3 def f(n=1000000):
4 roundUp = lambda n, prime: int(ceil(float(n) / prime))
5

6 arr = [True] * n
7 arr[0] = False
8 arr[1] = False
9 primeList = []

10

11 for curr in range(2, n):
12 if not arr[curr]:
13 continue
14 primeList.append(curr)
15 for multiplicant in range(2, roundUp(n, curr)):
16 arr[multiplicant * curr] = False
17 return primeList

Martin Thoma | Software Engineering Basics



20

Logic Bugs: Names

4 def round_up(n, prime):
5 return int(ceil(float(n) / prime))
6

7

8 def get_primes_below_n(n=1000000):
9 is_prime_table = [True] * n

10 is_prime_table[0] = False
11 is_prime_table[1] = False
12 prime_list = []
13

14 for current_number in range(2, n):
15 if not is_prime_table[current_number]:
16 continue
17 prime_list.append(current_number)
18 for multiplicant in range(2, round_up(n, current_number)):
19 is_prime_table[multiplicant * current_number] = False
20 return prime_list

Martin Thoma | Software Engineering Basics



21

Logic Bugs: Doctests!

8 def get_primes_below_n(n=1000000):
9 """

10 Get a list of all primes below n.
11

12 Parameters
13 ----------
14 n : int
15

16 Returns
17 -------
18 prime_list : list
19

20 Examples
21 --------
22 >>> get_primes_below_n(10)
23 [2, 3, 5, 7]
24 """

Martin Thoma | Software Engineering Basics



22
Falsehood Data Scientists Beliefes

(1) Floating point numbers always look like this: 1.23456 or
0.000004577 or 12345.467765.

I Scientific notation: 4.577E-5 or 1.2345467765E4
I German decimal format: 1,23456 or 0,000004577

Martin Thoma | Software Engineering Basics



22
Falsehood Data Scientists Beliefes

(1) Floating point numbers always look like this: 1.23456 or
0.000004577 or 12345.467765.

I Scientific notation: 4.577E-5 or 1.2345467765E4

I German decimal format: 1,23456 or 0,000004577

Martin Thoma | Software Engineering Basics



22
Falsehood Data Scientists Beliefes

(1) Floating point numbers always look like this: 1.23456 or
0.000004577 or 12345.467765.

I Scientific notation: 4.577E-5 or 1.2345467765E4
I German decimal format: 1,23456 or 0,000004577

Martin Thoma | Software Engineering Basics



23
Falsehood Data Scientists Beliefes

(2.1) Country names have an unique representation

“Germany” vs “Deutschland”

Martin Thoma | Software Engineering Basics



23
Falsehood Data Scientists Beliefes

(2.1) Country names have an unique representation
“Germany” vs “Deutschland”

Martin Thoma | Software Engineering Basics



24
Falsehood Data Scientists Beliefes

(2.2) Country names have an unique representation in English

“United Kingdom” vs “UK”

Martin Thoma | Software Engineering Basics



24
Falsehood Data Scientists Beliefes

(2.2) Country names have an unique representation in English
“United Kingdom” vs “UK”

Martin Thoma | Software Engineering Basics



25
Falsehood Data Scientists Beliefes

(2.3) Country names have an unique unabreviated representation in
English

“United Kingdom” vs “Great Britain” vs “England” Solution:
Use/Demand ISO 3166-1 alpha-3 country codes everywhere

Martin Thoma | Software Engineering Basics



25
Falsehood Data Scientists Beliefes

(2.3) Country names have an unique unabreviated representation in
English
“United Kingdom” vs “Great Britain” vs “England”

Solution:
Use/Demand ISO 3166-1 alpha-3 country codes everywhere

Martin Thoma | Software Engineering Basics



25
Falsehood Data Scientists Beliefes

(2.3) Country names have an unique unabreviated representation in
English

“United Kingdom” vs “Great Britain” vs “England”

Solution:
Use/Demand ISO 3166-1 alpha-3 country codes everywhere

Martin Thoma | Software Engineering Basics



26
Falsehood Data Scientists Beliefes

(3) Data is clean

No.

I User database: Birth date in the year 3.
I User database: Active user who is more than 90 years old.
I User database: User who is younger than 6.

Martin Thoma | Software Engineering Basics



26
Falsehood Data Scientists Beliefes

(3) Data is clean
No.

I User database: Birth date in the year 3.
I User database: Active user who is more than 90 years old.
I User database: User who is younger than 6.

Martin Thoma | Software Engineering Basics



26
Falsehood Data Scientists Beliefes

(3) Data is clean
No.
I User database: Birth date in the year 3.

I User database: Active user who is more than 90 years old.
I User database: User who is younger than 6.

Martin Thoma | Software Engineering Basics



26
Falsehood Data Scientists Beliefes

(3) Data is clean
No.
I User database: Birth date in the year 3.
I User database: Active user who is more than 90 years old.

I User database: User who is younger than 6.

Martin Thoma | Software Engineering Basics



26
Falsehood Data Scientists Beliefes

(3) Data is clean
No.
I User database: Birth date in the year 3.
I User database: Active user who is more than 90 years old.
I User database: User who is younger than 6.

Martin Thoma | Software Engineering Basics



27
Falsehood Data Scientists Beliefes

(4) Time has no beginning and no end

Unix Time Stamp: Seconds since 1st of January, 1970. Stored in
unsigned int.

Martin Thoma | Software Engineering Basics



27
Falsehood Data Scientists Beliefes

(4) Time has no beginning and no end
Unix Time Stamp: Seconds since 1st of January, 1970. Stored in
unsigned int.

Martin Thoma | Software Engineering Basics



28
Falsehood Data Scientists Beliefes

(4) To avoid the Year-2038 problem, I can store YYYY-mm-dd
HH:MM:ss

I Python’s strftime directives
I Timezones
I Whenever possible, store the timezone and use ISO 8601:

2012-04-23T18:25:43.511+02:30 (reasons)

Martin Thoma | Software Engineering Basics

http://strftime.org/
https://stackoverflow.com/a/15952652/562769


28
Falsehood Data Scientists Beliefes

(4) To avoid the Year-2038 problem, I can store YYYY-mm-dd
HH:MM:ss

I Python’s strftime directives

I Timezones
I Whenever possible, store the timezone and use ISO 8601:

2012-04-23T18:25:43.511+02:30 (reasons)

Martin Thoma | Software Engineering Basics

http://strftime.org/
https://stackoverflow.com/a/15952652/562769


28
Falsehood Data Scientists Beliefes

(4) To avoid the Year-2038 problem, I can store YYYY-mm-dd
HH:MM:ss

I Python’s strftime directives
I Timezones

I Whenever possible, store the timezone and use ISO 8601:
2012-04-23T18:25:43.511+02:30 (reasons)

Martin Thoma | Software Engineering Basics

http://strftime.org/
https://stackoverflow.com/a/15952652/562769


28
Falsehood Data Scientists Beliefes

(4) To avoid the Year-2038 problem, I can store YYYY-mm-dd
HH:MM:ss

I Python’s strftime directives
I Timezones
I Whenever possible, store the timezone and use ISO 8601:

2012-04-23T18:25:43.511+02:30 (reasons)

Martin Thoma | Software Engineering Basics

http://strftime.org/
https://stackoverflow.com/a/15952652/562769


29
Falsehood Data Scientists Beliefes

(5) The (physical) unit of a column / an API can be guessed.

I Clarify it
I See if the distribution / quantiles are reasonable
I Internally, use unit library Pint

Martin Thoma | Software Engineering Basics

http://pint.readthedocs.io/en/latest/


29
Falsehood Data Scientists Beliefes

(5) The (physical) unit of a column / an API can be guessed.

I Clarify it

I See if the distribution / quantiles are reasonable
I Internally, use unit library Pint

Martin Thoma | Software Engineering Basics

http://pint.readthedocs.io/en/latest/


29
Falsehood Data Scientists Beliefes

(5) The (physical) unit of a column / an API can be guessed.

I Clarify it
I See if the distribution / quantiles are reasonable

I Internally, use unit library Pint

Martin Thoma | Software Engineering Basics

http://pint.readthedocs.io/en/latest/


29
Falsehood Data Scientists Beliefes

(5) The (physical) unit of a column / an API can be guessed.

I Clarify it
I See if the distribution / quantiles are reasonable
I Internally, use unit library Pint

Martin Thoma | Software Engineering Basics

http://pint.readthedocs.io/en/latest/


30
See also

I git
I meld: Tool for diff and merge ($ git mergetool)
I A successful Git branching model

I Debugging Python with ipdb and Sypder - starting at 4:00
I cprofile: Check where code improvements are effective
I David Goldberg: What Every Computer Scientist Should Know

About Floating-Point Arithmetic
I Testing with Python
I Logging with Python
I UML: Sequence diagrams, Flow charts (e.g. Dia or draw.io)
I Balsamiq: Draft an UI
I Web: REST basics

Martin Thoma | Software Engineering Basics

http://meldmerge.org/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.youtube.com/watch?v=8SNaW1nt6j0
https://docs.python.org/3/library/profile.html
https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf
https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf
https://martin-thoma.com/testing-python-code/
https://martin-thoma.com/logging-in-python/
https://www.websequencediagrams.com/
https://wiki.gnome.org/Apps/Dia/
https://www.draw.io/
https://balsamiq.com/
https://gist.github.com/alexserver/2fcc26f7e1ebcfc9f6d8

	Intended Audience
	A subsection!
	A subsection!

	Bugs
	Falsehood Data Scientists Beliefes

