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Intended Audience

Software is written by people with different backgrounds and
strengths. Not everybody has a Software Engineering background.
Those slides should help you to get the basics.
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Alice and Bob

I Project: Build self-driving
car

I Alice is in the US, Bob in
Germany
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Project structure

bin
docs
awesome_project
tests
setup.py
tox.ini

: $ grep -rnIi foobar

Details on my blog.
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git workflow

1. $ git clone repostory.git

2. $ git add filename

3. $ git commit

4. $ git push
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Version Control: git

Martin Thoma | Software Engineering Basics



7

git log
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git blame
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git status
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We read code MUCH more often than
we write it.
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git

Problem: Dirty commit history due to bugs / fixes
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Auto formatting

I PRs should not be about simple code style

I Choose one style guide and stick to it
I Trailing spaces are just noise - make your editor remove them

automatically.
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https://martin-thoma.com/python-style-guide/
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The Zen of Python, by Tim Peters (1)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
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The Zen of Python, by Tim Peters (2)

In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!
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commit messages

I Can I understand what the
commit was about?

I Use prefixes
I Mention issues

cleanup, fixed bug, new feature,
. . .
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commit messages

I Can I understand what the
commit was about?

I Use prefixes

I Mention issues

I BUG: bug fix
I DEV: development tool or

utility
I DOC: documentation
I ENH: Enhancement, a new

feature
I MAINT: Maintenance task
I REL: release
I STY: Stylistic change
I TST: addition or

modification of tests

Source: Scipy Development
Workflow
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https://docs.scipy.org/doc/numpy-1.13.0/dev/gitwash/development_workflow.html
https://docs.scipy.org/doc/numpy-1.13.0/dev/gitwash/development_workflow.html
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commit messages

I Can I understand what the
commit was about?

I Use prefixes
I Mention issues

I See issue #123
I Closes issue #123
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commit squashing

Commit squashing
Making multiple commits in a
row become one

Image source:
stevenschwenke.de
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https://stevenschwenke.de/GitToSquashOrNotToSquash
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git merge
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git merge vs git rebase

Image source: Jeff Kreeftmeijer
Martin Thoma | Software Engineering Basics

https://jeffkreeftmeijer.com/git-rebase/
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Logic Bugs: Functions and McCabe

1 from math import ceil
2

3 def f(n=1000000):
4 roundUp = lambda n, prime: int(ceil(float(n) / prime))
5

6 arr = [True] * n
7 arr[0] = False
8 arr[1] = False
9 primeList = []

10

11 for curr in range(2, n):
12 if not arr[curr]:
13 continue
14 primeList.append(curr)
15 for multiplicant in range(2, roundUp(n, curr)):
16 arr[multiplicant * curr] = False
17 return primeList
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Logic Bugs: Names

4 def round_up(n, prime):
5 return int(ceil(float(n) / prime))
6

7

8 def get_primes_below_n(n=1000000):
9 is_prime_table = [True] * n

10 is_prime_table[0] = False
11 is_prime_table[1] = False
12 prime_list = []
13

14 for current_number in range(2, n):
15 if not is_prime_table[current_number]:
16 continue
17 prime_list.append(current_number)
18 for multiplicant in range(2, round_up(n, current_number)):
19 is_prime_table[multiplicant * current_number] = False
20 return prime_list
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Logic Bugs: Doctests!

8 def get_primes_below_n(n=1000000):
9 """

10 Get a list of all primes below n.
11

12 Parameters
13 ----------
14 n : int
15

16 Returns
17 -------
18 prime_list : list
19

20 Examples
21 --------
22 >>> get_primes_below_n(10)
23 [2, 3, 5, 7]
24 """
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Falsehood Data Scientists Beliefes

(1) Floating point numbers always look like this: 1.23456 or
0.000004577 or 12345.467765.

I Scientific notation: 4.577E-5 or 1.2345467765E4
I German decimal format: 1,23456 or 0,000004577
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Falsehood Data Scientists Beliefes

(2.1) Country names have an unique representation

“Germany” vs “Deutschland”
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Falsehood Data Scientists Beliefes

(2.2) Country names have an unique representation in English

“United Kingdom” vs “UK”
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Falsehood Data Scientists Beliefes

(2.3) Country names have an unique unabreviated representation in
English

“United Kingdom” vs “Great Britain” vs “England” Solution:
Use/Demand ISO 3166-1 alpha-3 country codes everywhere
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Falsehood Data Scientists Beliefes

(3) Data is clean

No.

I User database: Birth date in the year 3.
I User database: Active user who is more than 90 years old.
I User database: User who is younger than 6.
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Falsehood Data Scientists Beliefes

(4) Time has no beginning and no end

Unix Time Stamp: Seconds since 1st of January, 1970. Stored in
unsigned int.
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Falsehood Data Scientists Beliefes

(4) To avoid the Year-2038 problem, I can store YYYY-mm-dd
HH:MM:ss

I Python’s strftime directives
I Timezones
I Whenever possible, store the timezone and use ISO 8601:

2012-04-23T18:25:43.511+02:30 (reasons)

Martin Thoma | Software Engineering Basics

http://strftime.org/
https://stackoverflow.com/a/15952652/562769
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Falsehood Data Scientists Beliefes

(5) The (physical) unit of a column / an API can be guessed.

I Clarify it
I See if the distribution / quantiles are reasonable
I Internally, use unit library Pint
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See also

I git
I meld: Tool for diff and merge ($ git mergetool)
I A successful Git branching model

I Debugging Python with ipdb and Sypder - starting at 4:00
I cprofile: Check where code improvements are effective
I David Goldberg: What Every Computer Scientist Should Know

About Floating-Point Arithmetic
I Testing with Python
I Logging with Python
I UML: Sequence diagrams, Flow charts (e.g. Dia or draw.io)
I Balsamiq: Draft an UI
I Web: REST basics
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http://meldmerge.org/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.youtube.com/watch?v=8SNaW1nt6j0
https://docs.python.org/3/library/profile.html
https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf
https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf
https://martin-thoma.com/testing-python-code/
https://martin-thoma.com/logging-in-python/
https://www.websequencediagrams.com/
https://wiki.gnome.org/Apps/Dia/
https://www.draw.io/
https://balsamiq.com/
https://gist.github.com/alexserver/2fcc26f7e1ebcfc9f6d8
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