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Introduction

When you want to develop a selfdriving car, you have to plan which path it should take. A
reasonable choice for the representation of paths are cubic splines. You also have to be able to
calculate how to steer to get or to remain on a path. A way to do this is by applying the PID
algorithm. This algorithm needs to know the signed current error. So you need to be able to get
the minimal distance of a point (the position of the car) to a cubic spline (the prefered path)
combined with sign (which represents the steering direction). As one steering direction might be
prefered, it is not only necessary to get the minimal absolute distance, but might also help to get
all points on the spline with minimal distance.

In this paper, I want to discuss how to find all points on a cubic function with minimal distance to
a given point. As other representations of paths might be easier to understand and to implement,
I will also cover the problem of finding the minimal distance of a point to a polynomial of degree
0, 1 and 2.

While I analyzed this problem, I’ve got interested in variations of the underlying PID-related
problem. So I will try to give robust and easy-to-implement algorithms to calculate the distance
of a point to a (piecewise or global) defined polynomial function of degree ≤ 3.

When you’re able to calculate the distance to a polynomial which is defined on a closed invervall,
you can calculate the distance from a point to a spline by calculating the distance to the pieces of
the spline.
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1 Description of the Problem

Let f : D → R with D ⊆ R be a polynomial function and P ∈ R2 be a point. Let dP,f : R→ R+
0

be the Euklidean distance of P to a point (x, f(x)) on the graph of f :

dP,f (x) :=
√

(x− xP )2 + (f(x)− yP )2

Now there is finite set M = { x1, . . . , xn } ⊆ D of minima for given f and P :

M =

{
x ∈ D

∣∣∣∣ dP,f (x) = min
x∈D

dP,f (x)

}

But minimizing dP,f is the same as minimizing d2P,f = (x2p − 2xpx+ x2) + (y2p − 2ypf(x) + f(x)2).

In order to solve the minimal distance problem, Fermat’s theorem about stationary points will be
tremendously usefull:

Theorem 1 (Fermat’s theorem about stationary points)
Let x0 be a local extremum of a differentiable function f : R→ R.

Then: f ′(x0) = 0.

So in fact you can calculate the roots of (dP,f (x))′ or (dP,f (x)2)′ to get candidates for minimal
distance. (dP,f (x)2)′ is a polynomial if f is a polynomial. So if f is a polynomial, we can always
get a finite number of candidates by finding roots of (dP,f (x)2)′. But this gets difficult when f
has degree 3 or higher as explained in Theorem 6. Another problem one has to bear in mind
is that these candidates include all points with minimal distance, but might also contain more.
Example 1 shows such a situation.

Let Sn be the function that returns the set of solutions for a polynomial f of degree n and a
point P :

Sn : { Polynomials of degree n defined on R } × R2 → P(R)

Sn(f, P ) := argmin dP,f (x)
x∈R

=M

If possible, I will explicitly give this function.
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2 Constant functions

2.1 Defined on R

Lemma 2
Let f : R→ R, f(x) := c with c ∈ R be a constant function.

Then (xP , f(xP )) is the only point on the graph of f with minimal distance to P .

The situation can be seen in Figure 2.1.
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Figure 2.1: Three constant functions and their points with minimal distance

Proof: The point (x, f(x)) with minimal distance can be calculated directly:

dP,f (x) =
√

(x− xP )2 + (f(x)− yP )2 (2.1)

=
√

(x2 − 2xPx+ x2P ) + (c2 − 2cyP + y2P ) (2.2)

=
√
x2 − 2xPx+ (x2P + c2 − 2cyP + y2P ) (2.3)

Theorem 1
======⇒ 0

!
= (dP,f (x)

2)′ (2.4)
= 2x− 2xP (2.5)

⇔ x
!
= xP (2.6)

So (xP , f(xP )) is the only point with minimal distance to P . �

This result means:

S0(f, P ) = { xP } with P = (xP , yP )
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2 Constant functions

2.2 Defined on a closed interval [a, b] ⊆ R

Theorem 3 (Solution formula for constant functions)
Let f : [a, b]→ R, f(x) := c with a, b, c ∈ R and a ≤ b be a constant function.

Then the point (x, f(x)) of f with minimal distance to P is given by:

argmin dP,f (x)
x∈[a,b]

=


S0(f, P ) if S0(f, P ) ∩ [a, b] 6= ∅
{ a } if S0(f, P ) 3 xP < a

{ b } if S0(f, P ) 3 xP > b
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Figure 2.2: Three constant functions and their points with minimal distance

Proof:

argmin dP,f (x)
x∈[a,b]

= argmin dP,f (x)
2

x∈[a,b]
(2.7)

= argmin
x∈[a,b]

(
(x− xP )2 +

constant︷ ︸︸ ︷
(y2P − 2yP c+ c2)

)
(2.8)

= argmin
x∈[a,b]

(x− xP )2 (2.9)

which is optimal for x = xP , but if xP /∈ [a, b], you want to make this term as small as
possible. It gets as small as possible when x is as similar to xp as possible. This yields
directly to the solution formula. �
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3 Linear function

3.1 Defined on R

Theorem 4 (Solution formula for linear functions on R)
Let f : R→ R be a linear function f(x) := m · x+ t with m ∈ R \ { 0 } and t ∈ R be a
linear function.

Then there is only one point (x, f(x)) on the graph of f with minimal distance to
P = (xP , yP ). This point is given by

x =
m

m2 + 1

(
yP +

1

m
· xP − t

)
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Figure 3.1: The shortest distance of P to f can be calculated by using the perpendicular

Proof: With Theorem 1 you get:

0
!
= (dP,f (x)

2)′ (3.1)
= 2(x− xP ) + 2(f(x)− yP )f ′(x) (3.2)

⇔ 0
!
= x− xP + (f(x)− yP )f ′(x) (3.3)
= x− xP + (mx+ t− yP ) ·m (3.4)
= x(m+ 1) +m(t− yP )− xP (3.5)

⇔ x
!
=
xp −m(t− yp)

m2 + 1
(3.6)

=
m

m2 + 1

(
yP +

1

m
· xP − t

)
(3.7)

It is obvious that a minium has to exist, the x from Equation 3.7 has to be this minimum. �
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3 Linear function

3.2 Defined on a closed interval [a, b] ⊆ R

Let f : [a, b]→ R, f(x) := m · x+ t with a, b,m, t ∈ R and a ≤ b, m 6= 0 be a linear function.
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Figure 3.2: Different situations when you have linear functions which are defined on a closed
intervall

The point with minimum distance can be found by:

argmin dP,f (x)
x∈[a,b]

=


S1(f, P ) if S1(f, P ) ∩ [a, b] 6= ∅
{ a } if S1(f, P ) 3 x < a

{ b } if S1(f, P ) 3 x > b

If S1(f, P ) ∩ [a, b] 6= ∅, then argmin dP,f (x)
x∈[a,b]

= S1(f, P ) ∩ [a, b], because S1(f, P ) gives all global

minima of f . Those are also minima for the intervall [a, b]. There are not more minima, because
S1 gives all minima of P to f .

If S1(f, P ) ∩ [a, b] = ∅, then it is not that simple. But we can calculate the distance function:

dP,f (x) =
√
(x− xP )2 + (f(x)− yP )2 (3.8)

=
√
(x2 − 2xxP + x2P ) + (mx+ (t− yP ))2 (3.9)

=
√

(x2 − 2xxP + x2P ) +m2x2 + 2mx(t− yP ) + (t− yP )2 (3.10)

=
√
x2(1 +m2) + x(−2xP + 2m(t− yP )) + (x2P + (t− yP )2) (3.11)

This function (defined on R) is symmetry to the axis

xS = −−2xP + 2m(t− yP )
2(1 +m2)

(3.12)

=
xP −m(t− yP )

1 +m2
(3.13)

=
m

m2 + 1
(yP +

1

m
xP − t) (3.14)
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3 Linear function

f is on (−∞, xS ] strictly monotonically decreasing and on [xS ,+∞) strictly monotonically
increasing.

Thus we can conclude:

∀x, y ∈ R : x ≤ y < xS ⇒ dP,f (xS) < dP,f (y) ≤ dP,f (x)

∀x, y ∈ R : xS < y ≤ x⇒ dP,f (xS) < dP,f (y) ≤ dP,f (x)

When S1(f, P ) ∩ [a, b] = ∅, then you can have two cases:

• a ≤ b < xS : b has the shortest distance in [a, b] on the graph of f to P .

• xS < a ≤ b: a has the shortest distance in [a, b] on the graph of f to P .
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4 Quadratic functions

4.1 Defined on R

Let f : R→ R, f(x) = a · x2 + b · x+ c with a ∈ R \ { 0 } and b, c ∈ R be a quadratic function.
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Figure 4.1: Quadratic functions

4.1.1 Calculate points with minimal distance

In this case, d2P,f is polynomial of degree n2 = 4. We use Theorem 1:

0
!
= (d2P,f )

′ (4.1)

= 2x− 2xp − 2ypf
′(x) +

(
f(x)2

)′ (4.2)
= 2x− 2xp − 2ypf

′(x) + 2f(x) · f ′(x) (chain rule) (4.3)

⇔ 0
!
= x− xp − ypf ′(x) + f(x) · f ′(x) (divide by 2) (4.4)

= x− xp − yp(2ax+ b) + (ax2 + bx+ c)(2ax+ b) (4.5)

= x− xp − yp · 2ax− ypb+ (2a2x3 + 2abx2 + 2acx+ abx2 + b2x+ bc) (4.6)

= x− xp − 2ypax− ypb+ (2a2x3 + 3abx2 + 2acx+ b2x+ bc) (4.7)

= 2a2x3 + 3abx2 + (1− 2ypa+ 2ac+ b2)x+ (bc− byp − xp) (4.8)

This is an algebraic equation of degree 3. There can be up to 3 solutions in such an equation.
Those solutions can be found with a closed formula. But not every solution of the equation given
by Theorem 1 has to be a solution to the given problem as you can see in Example 1.
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4 Quadratic functions

Example 1
Let a = 1, b = 0, c = −1, xp = 0, yp = 1. So f(x) = x2 − 1 and P (0, 1).

Equation 4.8
=======⇒ 0

!
= 2x3 − 3x (4.9)

= x(2x2 − 3) (4.10)

⇒ x1,2 = ±
√

3

2
and x3 = 0 (4.11)

dP,f (x3) =
√

02 + (−1− 1)2 = 2 (4.12)

dP,f

(
±
√

3

2

)
=

√√√√(√3

2
− 0

)2

+

(
1

2
− 1

)2

(4.13)

=
√

3/2 + 1/4 (4.14)

=
√

7/4 (4.15)
(4.16)

This means x3 is not a point of minimal distance, although (dP,f (x3))
′ = 0.

4.1.2 Number of points with minimal distance

Theorem 5
A point P has either one or two points on the graph of a quadratic function f that are
closest to P .

Proof: The number of closests points of f cannot be bigger than 3, because Equation 4.8 is a
polynomial function of degree 3. Such a function can have at most 3 roots. As f has at least
one point on its graph, there is at least one point with minimal distance.

In the following, I will do some transformations with f = f0 and P = P0. This will make it
easier to calculate the minimal distance points. Moving f0 and P0 simultaneously in x or y
direction does not change the minimum distance. Furthermore, we can find the points with
minimum distance on the moved situation and calculate the minimum points in the original
situation.

First of all, we move f0 and P0 by b
2a in x direction, so

f1(x) = ax2 − b2

4a
+ c and P1 =

(
xp +

b

2a
, yp

)

Because:1

f(x− b/2a) = a(x− b/2a)2 + b(x− b/2a) + c (4.17)

= a(x2 − b/ax+ b2/4a2) + bx− b2/2a+ c (4.18)

= ax2 − bx+ b2/4a+ bx− b2/2a+ c (4.19)

= ax2 − b2/4a+ c (4.20)

1The idea why you subtract b
2a

within f is that when you subtract something from x before applying f it takes
more time (x needs to be bigger) to get to the same situation. In consequence, if we want to move the whole
graph by 1 to the left, we have to add +1.
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4 Quadratic functions

Then move f1 and P1 by b2

4a − c in y direction. You get:

f2(x) = ax2 and P2 =
(
xP +

b

2a︸ ︷︷ ︸
=:z

, yP +
b2

4a
− c︸ ︷︷ ︸

=:w

)

As f2(x) = ax2 is symmetric to the y axis, only points P = (0, w) could possilby have three
minima.

Then compute:

dP,f2(x) =
√

(x− 0)2 + (f2(x)− w)2 (4.21)

=
√
x2 + (ax2 − w)2 (4.22)

=
√
x2 + a2x4 − 2awx2 + w2 (4.23)

=
√
a2x4 + (1− 2aw)x2 + w2 (4.24)

=

√(
ax2 +

1− 2aw

2a

)2

+ w2 −
(
1− 2aw

2a

)2

(4.25)

=

√√√√(ax2 + 1/2a− w)2 +

(
w2 −

(
1− 2aw

2a

)2
)

(4.26)

This means, the term
a2x2 + (1/2a− w)

has to get as close to 0 as possilbe when we want to minimize dP,f2 . For w ≤ 1/2a you only
have x = 0 as a minimum. For all other points P = (0, w), there are exactly two minima

x1,2 = ±
√

1
2a
−w
a . �

4.1.3 Solution formula

We start with the graph that was moved so that f2 = ax2.

Case 1: P is on the symmetry axis, hence xP = − b
2a .

In this case, we have already found the solution. If w = yP + b2

4a − c >
1
2a , then there are two

solutions:

x1,2 = ±

√
1
2a − w
a

Otherwise, there is only one solution x1 = 0.
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4 Quadratic functions

Case 2: P = (z, w) is not on the symmetry axis, so z 6= 0. Then you compute:

dP,f2(x) =
√

(x− z)2 + (f2(x)− w)2 (4.27)

=
√
(x2 − 2zx+ z2) + ((ax2)2 − 2awx2 + w2) (4.28)

=
√
a2x4 + (1− 2aw)x2 + (−2z)x+ z2 + w2 (4.29)

0
!
=
((
dP,f2(x)

)2)′ (4.30)

= 4a2x3 + 2(1− 2aw)x+ (−2z) (4.31)

= 2
(
2a2x3 + (1− 2aw)x

)
− 2z (4.32)

⇔ 0
!
= 2a2x3 + (1− 2aw)x− z (4.33)

a6=0⇔ 0
!
= x3 +

1− 2aw

2a2︸ ︷︷ ︸
=:α

x+
−z
2a2︸︷︷︸
=:β

(4.34)

= x3 + αx+ β (4.35)

Let t be defined as
t :=

3

√√
3 · (4α3 + 27β2)− 9β

Analyzing t

t :=
3

√√
3 · (4α3 + 27β2)− 9β (4.36)

=
3

√√√√√
√√√√3 ·

(
4

(
1− 2aw

2a2

)3

+ 27

(
−z
2a2

)2
)
− 9
−z
2a2

(4.37)

=
3

√√√√√√
√√√√√3 ·

4

(
1− 2a(yP + b2

4a − c)
2a2

)3

+ 27

(
−(xP + b

2a)

2a2

)2
− 9

−(xP + b
2a)

2a2
(4.38)

=
3

√√√√√√√
√√√√√√12a4 ·

4

(
1− 2a(yP + b2

4a − c)
)3

2a2
+ 27

(
x2P + 2xP

b

2a
+

b2

4a2

)+ 9
xP + b

2a

2a2
(4.39)

=
3

√√√√√
√√√√12a4

4a2

(
8

(
1− 2a(yP +

b2

4a
− c)

)3

+ 27(4a2x2P + 4axP
b

2a
+ b2)

)
+ 9

xP + b
2a

2a2
(4.40)

=
3

√√√√√
√√√√3a2

(
8

(
1− 2a(yP +

b2

4a
− c)

)3

+ 27(4a2x2P + 4axP
b

2a
+ b2)

)
+ 9

xP + b
2a

2a2
(4.41)

When is t = 0? When is t ∈ R?
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4 Quadratic functions

Solutions of x3 + αx+ β

I will make use of the following identities:

(1− i
√
3)2 = −2(1 + i

√
3)

(1 + i
√
3)2 = −2(1− i

√
3)

(1± i
√
3)3 = −8

(a− b)3 = a3 − 3a2b+ 3ab2 − b3

Case 2.1: 4α3 + 27β2 ≥ 0: The first solution of x3 + αx+ β = 0 is

x =
t

3
√
18
−

3

√
2
3α

t

Let’s validate this solution:

0
!
=

 t
3
√
18
−

3

√
2
3α

t

3

+ α

 t
3
√
18
−

3

√
2
3α

t

+ β (4.42)

= (
t

3
√
18

)3 − 3(
t

3
√
18

)2
3

√
2
3α

t
+ 3(

t
3
√
18

)(

3

√
2
3α

t
)2 − (

3

√
2
3α

t
)3 +

tα
3
√
18
−

3

√
2
3α

2

t
+ β (4.43)

=
t3

18
− 3t2

3
√
182

3

√
2
3α

t
+

3t
3
√
18

3

√
4
9α

2

t2
−

2
3α

3

t3
+

tα
3
√
18
−

3
√
2α2

3
√
3t

+ β (4.44)

=
t3

18
−

3
√
18tα

3
√
182

+
3
√
12α2

3
√
18t

− 2α3

3t3
+

tα
3
√
18
−

3
√
2α2

3
√
3t

+ β (4.45)

=
t3

18
− tα

3
√
18

+
3
√
2α2

3
√
3t
− 2α3

3t3
+

tα
3
√
18
−

3
√
2α2

3
√
3t

+ β (4.46)

=
t3

18
− 2α3

3t3
+ β (4.47)

=
t6 − 12α3 + β18t3

18t3
(4.48)

Now only go on calculating with the numerator. Start with resubstituting t:

0 = (
√
3 · (4α3 + 27β2)− 9β)2 − 12α3 + β18(

√
3 · (4α3 + 27β2)− 9β) (4.49)

= (
√

3 · (4α3 + 27β2))2 + (9β)2 − 12α3 − (2 · 9) · 9β2 (4.50)

= 3 · (4α3 + 27β2)− 81β2 − 12α3 (4.51)
= 0 (4.52)

Case 2.2: The second solution of x3 + αx+ β = 0 is

x =
(1 + i

√
3)α

3
√
12 · t

− (1− i
√
3)t

2 3
√
18

We will verify it in multiple steps. First, calculate x3:

x3 =

(
(1 + i

√
3)α

3
√
12 · t

)3

︸ ︷︷ ︸
=: 1©

−3

(
(1 + i

√
3)α

3
√
12 · t

)2(
(1− i

√
3)t

2 3
√
18

)
︸ ︷︷ ︸

=: 2©

(4.53)
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4 Quadratic functions

+ 3

(
(1 + i

√
3)α

3
√
12 · t

)(
(1− i

√
3)t

2 3
√
18

)2

︸ ︷︷ ︸
=: 3©

−

(
(1− i

√
3)t

2 3
√
18

)3

︸ ︷︷ ︸
=: 4©

(4.54)

Now simplify the summands of x3:

1© =

(
(1 + i

√
3)α

3
√
12 · t

)3

(4.55)

=
−8α3

12t3
(4.56)

=
−2α3

3t3
(4.57)

2© = −3

(
(1 + i

√
3)α

3
√
12 · t

)2(
(1− i

√
3)t

2 3
√
18

)
(4.58)

=
−3α2(−2(1− i

√
3))(1− i

√
3)t

t2
3
√
24 · 32 · 2 3

√
2 · 32

(4.59)

=
6α2t(−2(1 + i

√
3))

12t2 3
√
12

(4.60)

=
−α2(1 + i

√
3)

t 3
√
12

(4.61)

3© = 3

(
(1 + i

√
3)α

3
√
12 · t

)(
(1− i

√
3)t

2 3
√
18

)2

(4.62)

=
3αt(1 + i

√
3)(−2(1 + i

√
3))

4 · 3
√
12 · 182

(4.63)

=
−αt(−2(1− i

√
3))

2 3
√
12 · 4 · 3

(4.64)

=
αt(1− i

√
3)

3
√
24 · 32

(4.65)

=
αt(1− i

√
3

2 3
√
18

(4.66)

4© = −

(
(1− i

√
3)t

2 3
√
18

)3

(4.67)

= −(−8)t3

8 · 18
(4.68)

=
t3

18
(4.69)

Now get back to the original equation:

0
!
= x3 + αx+ β (4.70)

=

(
−2α3

3t3
+
−α2(1 +

√
3i)

t 3
√
12

+
αt(1−

√
3i)

2 3
√
18

+
t3

18

)
(4.71)

+ α

(
(1 + i

√
3)α

3
√
12 · t

− (1− i
√
3)t

2 3
√
18

)
+ β (4.72)
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4 Quadratic functions

=
−2α3

3t3
+
t3

18
+ β (4.73)

=
−12α3 + t6 + 18t3β

18t3
(4.74)

Now continue with only the numerator

0
!
= −12α3 + (

√
3(4α3 + 27β2)− 9β)2 + 18(

√
3(4α3 + 27β2)− 9β)β (4.75)

= −12α3 +
(
3(4α3 + 27β2)− 2 ·

√
3(4α3 + 27β2) · 9β + 81β2

)
(4.76)

+ 18β(
√

3(4α3 + 27β2)− 9β) (4.77)

= 81β2 + 81β2 − 2 · 81β2 (4.78)
= 0 (4.79)

Case 2.3: The third and thus last solution of x3 + αx+ β = 0 is

x =
(1− i

√
3)α

3
√
12 · t

− (1 + i
√
3)t

2 3
√
18

The complex conjugate root theorem states that if x is a complex root of a polynomial P , then
its complex conjugate x is also a root of P . The solution presented in this case is the complex
conjugate of case 2.2.

So the solution is given by

NO! Currently, there are erros in the solution. Check f(x) = x2 and P = (−2, 4). Solution
should be x1 = −2, but it isn’t!

xS := − b

2a
(the symmetry axis)

w := yP +
b2

4a
− c and z := xP +

b

2a

α :=
1− 2aw

2a2
and β :=

−z
2a2

t :=
3

√√
3 · (4α3 + 27β2)− 9β

argmin dP,f (x)
x∈R

=



x1 = +
√
a(yp +

b2

4a − c)−
1
2 + xS and if xP = xS and yp + b2

4a − c >
1
2a

x2 = −
√
a(yp +

b2

4a − c)−
1
2 + xS

x1 = xS if xP = xS and yp + b2

4a − c ≤
1
2a

x1 =
t

3√18
−

3
√

2
3
α

t if xP 6= xS
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4 Quadratic functions

4.2 Defined on a closed interval [a, b] ⊆ R

Now the problem isn’t as simple as with constant and linear functions.

If one of the minima in S2(P, f) is in [a, b], this will be the shortest distance as there are no
shorter distances.

The following IS WRONG! Can I include it to help the reader understand the problem?

If the function (defined on R) has only one shortest distance point x for the given P , it’s also
easy: The point in [a, b] that is closest to x will have the sortest distance.

argmin dP,f (x)
x∈[a,b]

=


S2(f, P ) ∩ [a, b] if S2(f, P ) ∩ [a, b] 6= ∅
{ a } if |S2(f, P )| = 1 and S2(f, P ) 3 x < a

{ b } if |S2(f, P )| = 1 and S2(f, P ) 3 x > b

todo if |S2(f, P )| = 2 and S2(f, P ) ∩ [a, b] = ∅
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5 Cubic functions

5.1 Defined on R

Let f : R→ R, f(x) = a ·x3+ b ·x2+ c ·x+d be a cubic function with a ∈ R\{ 0 } and b, c, d ∈ R.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

f1(x) = x3

f2(x) = x3 + x2

f2(x) = x3 + 2 · x2

f1(x) = x3 + x

Figure 5.1: Cubic functions

5.1.1 Calculate points with minimal distance

Theorem 6
There cannot be a finite, closed form solution to the problem of finding a closest point
(x, f(x)) to a given point P when f is a polynomial function of degree 3 or higher.

Proof: Suppose you could solve the closest point problem for arbitrary cubic functions f =
ax3 + bx2 + cx+ d and arbitrary points P = (xP , yP ).

Then you could solve the following problem for x:

0
!
=
(
(dP,f (x))

2
)′ (5.1)

= −2xp + 2x− 2yp(f(x))
′ + (f(x)2)′ (5.2)

= 2f(x) · f ′(x)− 2ypf
′(x) + 2x− 2xp (5.3)

= f(x) · f ′(x)− ypf ′(x) + x− xp (5.4)
= f ′(x) · (f(x)− yp)︸ ︷︷ ︸

Polynomial of degree 5

+x− xp (5.5)

General algebraic equations of degree 5 don’t have a solution formula.1 Although here seems
1TODO: Quelle

16



5 Cubic functions

to be more structure, the resulting algebraic equation can be almost any polynomial of degree
5:2

0
!
= f ′(x) · (f(x)− yp) + (x− xp) (5.6)

= 3a2︸︷︷︸
=ã

x5 + 5ab︸︷︷︸
=b̃

x4 + 2(2ac+ b2)︸ ︷︷ ︸
=c̃

x3 +3(ad+ bc− ayp)︸ ︷︷ ︸
=d̃

x2 (5.7)

+(2bd+ c2 + 1− 2byp)︸ ︷︷ ︸
=ẽ

x+ cd− cyp − xp︸ ︷︷ ︸
=f̃

(5.8)

0
!
= ãx5 + b̃x4 + c̃x3 + d̃x2 + ẽx+ f̃ (5.9)

1. For any coefficient ã ∈ R>0 of x5 we can choose a := 1
3

√
ã such that we get ã.

2. For any coefficient b̃ ∈ R \ { 0 } of x4 we can choose b := 1
5a · b̃ such that we get b̃.

3. With c := −2b2 + 1
4a c̃, we can get any value of c̃ ∈ R.

4. With d := −bc+ ayp +
1
a d̃, we can get any value of d̃ ∈ R.

5. With yp := 1
2b(2bd+ c2) · ẽ, we can get any value of ẽ ∈ R.

6. With xp := cd− cyP + f̃ , we can get any value of f̃ ∈ R.

The first restriction guaratees that we have a polynomial of degree 5. The second one is
necessary, to get a high range of ẽ.

This means that there is no finite solution formula for the problem of finding the closest
points on a cubic function to a given point, because if there was one, you could use this
formula for finding roots of polynomials of degree 5. �

5.1.2 Another approach

Just like we moved the function f and the point to get in a nicer situation, we can apply this
approach for cubic functions.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

f1(x) = x3

f2(x) = x3 + x

f1(x) = x3 − x
f2(x) = x3 + 2 · x
f2(x) = x3 + 3 · x

Figure 5.2: Cubic functions with b = d = 0

2Thanks to Peter Košinár on math.stackexchange.com for the idea.
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5 Cubic functions

First, we move f0 by b
3a in x direction, so

f1(x) = ax3 +
b2(c− 1)

3a
x+

2b3

27a2
− bc

3a
+ d and P1 = (xP +

b

3a
, yP )

because

f1(x) = a

(
x− b

3a

)3

+ b

(
x− b

3a

)2

+ c

(
x− b

3a

)
+ d (5.10)

= a

(
x3 − 3

b

3a
x2 + 3(

b

3a
)2x− b3

27a3

)
+ b

(
x2 − 2b

3a
x+

b2

9a2

)
+ cx− bc

3a
+ d (5.11)

= ax3 − bx2 + b2

3a
x− b3

27a2
(5.12)

+ bx2 − 2b2

3a
x+

b3

9a2
(5.13)

+ cx− bc

3a
+ d (5.14)

= ax3 +
b2

3a
(1− 2 + c)x+

b3

9a2

(
1− 1

3

)
− bc

3a
+ d (5.15)

The we move it in y direction by −( 2b3

27a2
− bc

3a + d):

f2(x) = ax3 +
b2(c− 1)

3a
x and P2 = (xP +

b

3a
, yP − (

2b3

27a2
− bc

3a
+ d))

Multiply everything by sgn(a):

f3(x) = |a|︸︷︷︸
=:α

x3 +
b2(c− 1)

3|a|︸ ︷︷ ︸
=:β

x and P2 = (xP +
b

3a
, sgn(a)(yP −

2b3

27a2
+
bc

3a
− d))

Now the problem seems to be much simpler. The function αx3 + βx with α > 0 is centrally
symmetric to (0, 0).

Und weiter?

5.1.3 Number of points with minimal distance

As this leads to a polynomial of degree 5 of which we have to find roots, there cannot be more
than 5 solutions.

Can there be 3, 4 or even 5 solutions? Examples!
After looking at function graphs of cubic functions, I’m pretty sure that there cannot be 4 or
5 solutions, no matter how you chose the cubic function f and P .
I’m also pretty sure that there is no polynomial (no matter what degree) that has more than
3 solutions.
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5 Cubic functions

5.1.4 Interpolation and approximation

Quadratic spline interpolation

You could interpolate the cubic function by a quadratic spline.

Bisection method

TODO

Newtons method

One way to find roots of functions is Newtons method. It gives an iterative computation procedure
that can converge quadratically if some conditions are met:

Theorem 7 (local quadratic convergence of Newton’s method3)
Let D ⊆ Rn be open and f : D → Rn ∈ C2(R). Let x∗ ∈ D with f(x∗) = 0 and the
Jaccobi-Matrix f ′(x∗) should not be invertable when evaluated at the root.

Then there is a sphere

K := Kρ(x
∗) = { x ∈ Rn | ‖x− x∗‖∞ ≤ ρ } ⊆ D

such that x∗ is the only root of f in K. Furthermore, the elements of the sequence

xn+1 = xn −
f ′(xn)

f(xn)

are for every starting value x0 ∈ K again in K and

lim
n→∞

xk = x∗

Also, there is a constant C > 0 such that

‖x∗ − xn+1‖ = C‖x∗ − xn‖2 for n ∈ N0‖

The approach is extraordinary simple. You choose a starting value x0 and compute

xn+1 = xn −
f(xn)

f ′(xn)

As soon as the values don’t change much, you are close to a root. The problem of this approach
is choosing a starting value that is close enough to the root. So we have to have a “good” initial
guess.

3Translated from German to English from lecture notes of "Numerische Mathematik für die Fachrichtung
Informatik und Ingenieurwesen" by Dr. Weiß, KIT
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5 Cubic functions

Muller’s method

Muller’s method was first presented by David E. Muller in 1956.

Paper? Might this be worth a try?

Bisection method

The idea of the bisection method is the following:

Suppose you know a finite intervall [a, b] in which you have exactly one root r ∈ (a, b) with
f(r) = 0.

Then you can half that interval:

[a, b] =

[
a,
a+ b

2

]
∪
[
a+ b

2
, b

]

Now three cases can occur:

Case 1 f(a+b2 ) = 0: You have found the exact root.

Case 2 sgn(a) = sgn(a+b2 ): Continue searching in [a+b2 , b]

Case 3 sgn(b) = sgn(a+b2 ): Continue searching in [a, a+b2 ]

Which intervall can I choose? How would I know that there is exactly one root?

Bairstow’s method

Cite from Wikipedia: The algorithm first appeared in the appendix of the 1920 book "Applied
Aerodynamics" by Leonard Bairstow. The algorithm finds the roots in complex conjugate pairs
using only real arithmetic.

[...]

Find a source for the following!

A particular kind of instability is observed when the polynomial has odd degree and only one real
root.

5.2 Defined on a closed interval [a, b] ⊆ R

The point with minimum distance can be found by:

argmin dP,f (x)
x∈[a,b]

=

{
S3(f, P ) if S3(f, P ) ∩ [a, b] 6= ∅
TODO if S3(f, P ) ∩ [a, b] = ∅
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