\documentclass{article} \usepackage[utf8]{inputenc} % this is needed for umlauts \usepackage[ngerman]{babel} % this is needed for umlauts \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf \usepackage[pdftex,active,tightpage]{preview} \setlength\PreviewBorder{2mm} \usepackage{tikz} \usetikzlibrary{shapes,decorations,calc,patterns} \usepackage{amsmath,amssymb} \begin{document} \begin{preview} %\begin{align*} % f: \mathbb{R} \rightarrow \mathbb{R}\\ % g: \mathbb{R} \rightarrow \mathbb{R}\\ %\end{align*} \begin{tikzpicture}[% auto, example/.style={ rectangle, draw=blue, thick, fill=blue!20, text width=4.5em, align=center, rounded corners, minimum height=2em }, algebraicName/.style={ text width=7em, align=center, minimum height=2em }, explanation/.style={ text width=10em, align=left, minimum height=3em } ] \pgfdeclarepatternformonly{north east lines wide}% {\pgfqpoint{-1pt}{-1pt}}% {\pgfqpoint{10pt}{10pt}}% {\pgfqpoint{9pt}{9pt}}% { \pgfsetlinewidth{3pt} \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} \pgfpathlineto{\pgfqpoint{9.1pt}{9.1pt}} \pgfusepath{stroke} } \draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.70) rectangle (13.4,-6.85); \draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.60) rectangle (7.3,-6.75); \draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.55) rectangle (7.2,-6.65); \draw[fill=blue!20,blue!20, rounded corners] ( 4.55,-3.45) rectangle (13.1,-6.55); \draw (0, 0) node[algebraicName] (A) {gleichmäßig stetig} (3, 0) node[explanation] (B) { \begin{minipage}{0.90\textwidth} \tiny $\forall \varepsilon >0 \ \exists \delta=\delta(\varepsilon)>0\colon\\ |f(x)-f(z)| < \varepsilon\\ \forall x,z \in D \text{ mit } |x-z|<\delta$ \end{minipage} } (6, 0) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_5(x)=\sin(x)$} (6,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_6(x)=\cos(x)$} (4,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_9(x)=\sqrt x$} (0,-2) node[algebraicName, purple] (C) {Lipschitz-stetig} (3.5,-2) node[explanation] (X) { \begin{minipage}{90\textwidth} \tiny $f$ heißt auf $D$ \textbf{Lipschitz-stetig}\\ $:\Leftrightarrow \exists L\ge 0: |f(x)-f(z)|\le L|x-z|\ \forall x,z \in D$ \end{minipage} } (12,-6) node[example, draw=blue, fill=black!15] (G) {\tiny$f_2(x) = e^x$} (0,-6) node[example, draw=purple, fill=red!15] (K) {\tiny$f_4(x) = |x|$} (6,-6) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (N) {\tiny$f_7(x) = 42$} (6,-4) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (ANCHORD) {\tiny$f_3(x) = 42$} (12,-2) node[example, draw=yellow, fill=yellow!15] (Q) {\tiny$f_1(x) = |x|$} (9, 0) node[algebraicName] (O) {stetig} (12,0) node[explanation] (X) { \begin{minipage}{0.9\textwidth} \tiny $f$ heißt stetig in $x_0 :\Leftrightarrow$\\ $\forall \varepsilon > 0\ \exists \delta = \delta(\varepsilon)\colon$\\ $|f(x)-f(x_0)|<\varepsilon$ \\ $\forall x\in D_\delta(x_0)$ \end{minipage} } (12,-4) node[example, draw=blue, fill=black!15] (P) {\tiny$g_1(x) = \frac{1}{x}$} (12,-5) node[example, draw=blue, fill=black!15] (P) {\tiny$f_8(x) = x^2$} (9, -4) node[algebraicName] (random1) {differenzierbar} (9.8, -4.7) node[explanation] (X) { \begin{minipage}{0.9\textwidth} \tiny $f$ heißt differenzierbar in $x_0 :\Leftrightarrow$\\ $\lim_{h \rightarrow 0} \frac{f(x_0+h) - f(x_0)}{h}$ existiert \end{minipage} }; % LP-Stetig \draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$); % gleichmäßig stetig \draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$); % stetige funktionen \draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$); % differenzierbar \draw[blue, thick, rounded corners] ($(ANCHORD.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.2,-0.2)$); \end{tikzpicture} \end{preview} \end{document}