quadratic-case-2.3.tex 5.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. One solution is
  2. \[x = \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t}
  3. -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\]
  4. We will verify it in multiple steps. First, get $x^3$:
  5. \begin{align}
  6. x^3 &= \left (\frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} - \frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}} \right)^3\\
  7. &= \left (\frac{(2\sqrt[3]{18})(1-i \sqrt{3}) \alpha - (\sqrt[3]{12} \cdot t)(1+i\sqrt{3}) t}{\sqrt[3]{12} t \cdot 2 \sqrt[3]{18}} \right)^3\\
  8. &= \left (\frac{2\sqrt[3]{18}\alpha (1-i \sqrt{3}) - \sqrt[3]{12} t^2(1+i\sqrt{3})}{2t \cdot 6} \right )^3\\
  9. &= \bigg (\frac{\overbrace{\sqrt[3]{12} \alpha (1-i \sqrt{3}) - t^2 (1+i\sqrt{3})}^{\text{numerator}}}{\sqrt[3]{12^2} t} \bigg )^3
  10. \end{align}
  11. Now calculate numerator$^3$:
  12. \begin{align}
  13. \left (\sqrt[3]{12} \alpha (1-i \sqrt{3}) - t^2(1+i\sqrt{3}) \right )^3 &=
  14. 12 \alpha^3 (1-i\sqrt{3})^3 \\
  15. &\hphantom{{}=}- 3 \sqrt[3]{12^2} \alpha^2(1-i\sqrt{3})^2 (t^2(1+i \sqrt{3}))\\
  16. &\hphantom{{}=}+ 3 \sqrt[3]{12\hphantom{^2}} \alpha\hphantom{^2} (1-i\sqrt{3}) t^4 (1+i\sqrt{3})^2 - t^6 (1+i\sqrt{3})^3\\
  17. &= 12 \alpha^3 \cdot (-8) \\
  18. &\hphantom{{}=}- 3 \sqrt[3]{12^2} \alpha^2(-2(1+i\sqrt{3}))(t^2(1+i \sqrt{3}))\\
  19. &\hphantom{{}=}+ 3 \sqrt[3]{12} \alpha (1-i\sqrt{3}) t^4 (-2(1-i\sqrt{3})) - t^6 (-8)\\
  20. &= -96 \alpha^3 + 6 \sqrt[3]{12^2} \alpha^2 t^2 (1+i \sqrt{3})^2\\
  21. &\hphantom{{}=}- 6 \sqrt[3]{12} \alpha t^4 (1-i\sqrt{3})^2 +8 t^6\\
  22. &= -96 \alpha^3 - 12 \sqrt[3]{12^2} \alpha^2 t^2 (1-i \sqrt{3})\\
  23. &\hphantom{{}=}+ 12 \sqrt[3]{12} \alpha t^4 (1+i \sqrt{3}) +8 t^6\\
  24. &= -96 \alpha^3 - 24 \sqrt[3]{18} \alpha^2 t^2 (1-i \sqrt{3})\\
  25. &\hphantom{{}=}+ 12 \sqrt[3]{12} \alpha t^4 (1+i \sqrt{3}) +8 t^6
  26. \end{align}
  27. \goodbreak
  28. Now back to the original equation:
  29. \begin{align}
  30. 0 &\stackrel{!}{=} x^3 + \alpha x + \beta\\
  31. &= \frac{-96 \alpha^3 - 24 \sqrt[3]{18} \alpha^2 t^2 (1-i \sqrt{3}) + 12 \sqrt[3]{12} \alpha t^4 (1+i \sqrt{3}) +8 t^6}{12^2 t^3}\\
  32. &\hphantom{{}=}+\alpha \left (\sqrt[3]{12} \cdot \frac{\sqrt[3]{12} \alpha (1-i \sqrt{3}) - t^2(1+i\sqrt{3})}{12t} \right ) + \beta
  33. \end{align}
  34. \todo[inline]{the calculation above seems to be wrong / too long. Next try}
  35. When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
  36. you get:\footnote{Remember, that $(1+i\sqrt{3})^2 = -2 (1-i \sqrt{3})$ and $(1-i \sqrt{3})^2 = -2 (1+i \sqrt{3})$
  37. and $(1 \pm i \sqrt{3})^3 = -8$}
  38. \begin{align}
  39. 0 &\stackrel{!}{=} \left( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t}
  40. -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}} \right)^3
  41. + \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  42. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  43. &= \frac{(1-i \sqrt{3})^3 \alpha^3}{12 \cdot t^3}
  44. - 3 \left (\frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} \right )^2 \frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}
  45. + 3 \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} \left (\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}} \right)^2\\
  46. &\hphantom{{}=}
  47. + \frac{(1+i\sqrt{3})^3 t^3}{2^3 \cdot 18}
  48. + \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  49. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  50. &= \frac{-8 \alpha^3}{12t^3}
  51. - 3 \frac{-2(1+i \sqrt{3}) \alpha^2}{\sqrt[3]{12^2} t^2} \frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}
  52. + 3 \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} \frac{-2(1-i\sqrt{3}) t^2}{4\sqrt[3]{18^2}}\\
  53. &\hphantom{{}=}
  54. + \frac{-8 t^3}{2^3 \cdot 18}
  55. + \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  56. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  57. &= \frac{-2 \alpha^3}{3t^3}
  58. + \frac{6 \alpha^2 t (-2)(1-i \sqrt{3})}{(\sqrt[3]{12^2} t^2)(2\sqrt[3]{18})}
  59. + \frac{12 \alpha t^2 (1+i \sqrt{3})}{(\sqrt[3]{12} \cdot t)(4\sqrt[3]{18^2)}}\\
  60. &\hphantom{{}=}
  61. + \frac{- t^3}{18}
  62. + \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  63. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  64. &= \frac{-2 \alpha^3}{3t^3}
  65. + \frac{-6 \alpha^2 (1-i \sqrt{3})}{6 \sqrt[3]{12} t}
  66. + \frac{3 \alpha t (1+i \sqrt{3})}{6\sqrt[3]{18}}
  67. + \frac{- t^3}{18}\\
  68. &\hphantom{{}=}+ \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  69. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  70. &= \frac{-2 \alpha^3}{3t^3}
  71. + \frac{-\alpha^2 (1-i \sqrt{3})}{\sqrt[3]{12} t}
  72. + \frac{\alpha t (1+i \sqrt{3})}{2\sqrt[3]{18}}
  73. + \frac{- t^3}{18}\\
  74. &\hphantom{{}=}+ \alpha \left ( \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t} -\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\right )
  75. + \beta\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  76. &= \frac{12 \cdot (-2 \alpha^3) +(6 \sqrt[3]{18}t^2)(-\alpha^2 (1-i \sqrt{3}))+ (3 \sqrt[3]{12})(\alpha t (1+i \sqrt{3})) + (2t^3)(- t^3)}{36t^3}\\
  77. &\hphantom{{}=}+ \frac{(6 \sqrt[3]{18})((1-i \sqrt{3}) \alpha) - (3 \sqrt[3]{12})((1+i\sqrt{3}) t) + 36t^3 \beta}{36t^3}\\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  78. \end{align}
  79. \goodbreak
  80. Now calculate only the numerator:
  81. \begin{align}
  82. 0 &\stackrel{!}{=} -12 \alpha^3 - 6 \sqrt[3]{18} t^2 \alpha^2 (1 - i \sqrt{3})
  83. + 3 \sqrt[3]{12} \alpha t (1+i\sqrt{3}) - 2t^6\\
  84. &\hphantom{{}=} + 6\sqrt[3]{18} \alpha (1- i \sqrt{3})
  85. - 3 \sqrt[3]{12} t (1+i \sqrt{3}) + 36 t^3 \beta
  86. \end{align}