| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- \chapter{Constant functions}
- \section{Defined on $\mdr$}
- Let $f(x) = c$ with $c \in \mdr$ be a constant function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-5, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {1};
- \addplot[domain=-5:5, thick,samples=50, green] {2};
- \addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
- \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
- \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
- \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
- \addlegendentry{$f(x)=1$}
- \addlegendentry{$g(x)=2$}
- \addlegendentry{$h(x)=3$}
- \end{axis}
- \end{tikzpicture}
- \caption{Three constant functions and their points with minimal distance}
- \label{fig:constant-min-distance}
- \end{figure}
- Then $(x_P,f(x_P))$ has
- minimal distance to $P$. Every other point has higher distance.
- See Figure~\ref{fig:constant-min-distance}.
- \section{Defined on a closed interval of $\mdr$}
|