problem-description.tex 988 B

12345678910111213141516171819202122
  1. \chapter{Description of the Problem}
  2. Let $f: D \rightarrow \mdr$ with $D \subseteq \mdr$ be a polynomial function and $P \in \mdr^2$
  3. be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
  4. be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
  5. on the graph of $f$:
  6. \[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
  7. Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for given $f$ and $P$:
  8. \[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
  9. But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
  10. \begin{align}
  11. d_{P,f}(x)^2 &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
  12. &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
  13. \end{align}
  14. \begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
  15. Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
  16. Then: $f'(x_0) = 0$.
  17. \end{theorem}