math-minimal-distance-to-cubic-function.tex 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. \documentclass[a4paper]{scrartcl}
  2. \usepackage{amssymb, amsmath} % needed for math
  3. \usepackage{mathtools} % \xRightarrow
  4. \usepackage[utf8]{inputenc} % this is needed for umlauts
  5. \usepackage[english]{babel} % this is needed for umlauts
  6. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  7. \usepackage[margin=2.5cm]{geometry} %layout
  8. \usepackage{hyperref} % links im text
  9. \usepackage{braket} % needed for \Set
  10. \usepackage{parskip}
  11. \usepackage[colorinlistoftodos]{todonotes}
  12. \usepackage{pgfplots}
  13. \pgfplotsset{compat=1.7,compat/path replacement=1.5.1}
  14. \usepackage{tikz}
  15. \usepackage[framed,amsmath,thmmarks,hyperref]{ntheorem}
  16. \usepackage{framed}
  17. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18. % Define theorems %
  19. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20. \theoremstyle{break}
  21. \setlength\theoremindent{0.7cm}
  22. \theoremheaderfont{\kern-0.7cm\normalfont\bfseries}
  23. \theorembodyfont{\normalfont} % nicht mehr kursiv
  24. \def\mdr{\ensuremath{\mathbb{R}}}
  25. \newframedtheorem{theorem}{Theorem}
  26. \newframedtheorem{lemma}[theorem]{Lemma}
  27. \newtheorem{plaindefinition}{Definition}
  28. \newenvironment{definition}{\begin{plaindefinition}}{\end{plaindefinition}}
  29. \newenvironment{definition*}{\begin{plaindefinition*}}{\end{plaindefinition*}}
  30. \newtheorem{example}{Example}
  31. \theoremstyle{nonumberplain}
  32. \newtheorem{proof}{Proof:}
  33. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  34. \title{Minimal distance to a cubic function}
  35. \author{Martin Thoma}
  36. \hypersetup{
  37. pdfauthor = {Martin Thoma},
  38. pdfkeywords = {},
  39. pdftitle = {Minimal Distance}
  40. }
  41. \def\mdr{\ensuremath{\mathbb{R}}}
  42. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  43. % Begin document %
  44. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  45. \begin{document}
  46. \maketitle
  47. \begin{abstract}
  48. When you want to develop a selfdriving car, you have to plan which path
  49. it should take. A reasonable choice for the representation of
  50. paths are cubic splines. You also have to be able to calculate
  51. how to steer to get or to remain on a path. A way to do this
  52. is applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algorithm}.
  53. This algorithm needs to know the signed current error. So you need to
  54. be able to get the minimal distance of a point to a cubic spline combined with the direction (left or right).
  55. As you need to get the signed error (and one steering direction might
  56. be prefered), it is not only necessary to
  57. get the minimal absolute distance, but also to get all points
  58. on the spline with minimal distance.
  59. In this paper I want to discuss how to find all points on a cubic
  60. function with minimal distance to a given point.
  61. As other representations of paths might be easier to understand and
  62. to implement, I will also cover the problem of finding the minimal
  63. distance of a point to a polynomial of degree 0, 1 and 2.
  64. \end{abstract}
  65. \section{Description of the Problem}
  66. Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
  67. be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
  68. be the Euklidean distance $d_{P,f}$ of a point $P$ and a point $\left (x, f(x) \right )$:
  69. \[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
  70. Now there is \todo{Should I proof this?}{finite set} $x_1, \dots, x_n$ such that
  71. \[\forall \tilde x \in \mathbb{R} \setminus \{x_1, \dots, x_n\}: d_{P,f}(x_1) = \dots = d_{P,f}(x_n) < d_{P,f}(\tilde x)\]
  72. Essentially, you want to find the minima $x_1, \dots, x_n$ for given
  73. $f$ and $P$.
  74. But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
  75. \begin{align}
  76. d_{P,f}(x)^2 &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
  77. &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
  78. \end{align}
  79. \todo[inline]{Hat dieser Satz einen Namen? Gibt es ein gutes Buch,
  80. aus dem ich den zitieren kann? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 21.5).}
  81. \begin{theorem}\label{thm:required-extremum-property}
  82. Let $x_0$ be a relative extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
  83. Then: $f'(x_0) = 0$.
  84. \end{theorem}
  85. %bzw. 22.3
  86. %\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
  87. % Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
  88. % degree $n$, $x_0 \in \mathbb{R}$, \\
  89. % $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
  90. % and $f^{(n)} > 0$.
  91. %
  92. % Then $x_0$ is a local minimum of $f$.
  93. %\end{theorem}
  94. \clearpage
  95. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  96. % Constant functions %
  97. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  98. \section{Minimal distance to a constant function}
  99. Let $f(x) = c$ with $c \in \mdr$ be a constant function.
  100. \begin{figure}[htp]
  101. \centering
  102. \begin{tikzpicture}
  103. \begin{axis}[
  104. legend pos=north west,
  105. axis x line=middle,
  106. axis y line=middle,
  107. grid = major,
  108. width=0.8\linewidth,
  109. height=8cm,
  110. grid style={dashed, gray!30},
  111. xmin=-5, % start the diagram at this x-coordinate
  112. xmax= 5, % end the diagram at this x-coordinate
  113. ymin= 0, % start the diagram at this y-coordinate
  114. ymax= 3, % end the diagram at this y-coordinate
  115. axis background/.style={fill=white},
  116. xlabel=$x$,
  117. ylabel=$y$,
  118. tick align=outside,
  119. minor tick num=-3,
  120. enlargelimits=true,
  121. tension=0.08]
  122. \addplot[domain=-5:5, thick,samples=50, red] {1};
  123. \addplot[domain=-5:5, thick,samples=50, green] {2};
  124. \addplot[domain=-5:5, thick,samples=50, blue] {3};
  125. \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
  126. \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
  127. \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
  128. \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
  129. \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
  130. \addlegendentry{$f(x)=1$}
  131. \addlegendentry{$g(x)=2$}
  132. \addlegendentry{$h(x)=3$}
  133. \end{axis}
  134. \end{tikzpicture}
  135. \caption{Three constant functions and their points with minimal distance}
  136. \label{fig:constant-min-distance}
  137. \end{figure}
  138. Then $(x_P,f(x_P))$ has
  139. minimal distance to $P$. Every other point has higher distance.
  140. See Figure~\ref{fig:constant-min-distance}.
  141. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  142. % Linear functions %
  143. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  144. \section{Minimal distance to a linear function}
  145. Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
  146. $t \in \mdr$ be a linear function.
  147. \begin{figure}[htp]
  148. \centering
  149. \begin{tikzpicture}
  150. \begin{axis}[
  151. legend pos=north east,
  152. axis x line=middle,
  153. axis y line=middle,
  154. grid = major,
  155. width=0.8\linewidth,
  156. height=8cm,
  157. grid style={dashed, gray!30},
  158. xmin= 0, % start the diagram at this x-coordinate
  159. xmax= 5, % end the diagram at this x-coordinate
  160. ymin= 0, % start the diagram at this y-coordinate
  161. ymax= 3, % end the diagram at this y-coordinate
  162. axis background/.style={fill=white},
  163. xlabel=$x$,
  164. ylabel=$y$,
  165. tick align=outside,
  166. minor tick num=-3,
  167. enlargelimits=true,
  168. tension=0.08]
  169. \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
  170. \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
  171. \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
  172. \addlegendentry{$f(x)=\frac{1}{2}x$}
  173. \addlegendentry{$g(x)=-2x+6$}
  174. \end{axis}
  175. \end{tikzpicture}
  176. \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
  177. \label{fig:linear-min-distance}
  178. \end{figure}
  179. Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The slope of $f_\bot$
  180. is $- \frac{1}{m}$. Now you can calculate $f_\bot$:\nobreak
  181. \begin{align}
  182. f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
  183. \Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
  184. \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
  185. \end{align}
  186. Now find the point $(x, f(x))$ where the perpendicular crosses the function:
  187. \begin{align}
  188. f(x) &= f_\bot(x)\\
  189. \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
  190. \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
  191. \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
  192. \end{align}
  193. There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
  194. \clearpage
  195. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  196. % Quadratic functions %
  197. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  198. \section{Minimal distance to a quadratic function}
  199. Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
  200. $b, c \in \mdr$ be a quadratic function.
  201. \begin{figure}[htp]
  202. \centering
  203. \begin{tikzpicture}
  204. \begin{axis}[
  205. legend pos=north west,
  206. axis x line=middle,
  207. axis y line=middle,
  208. grid = major,
  209. width=0.8\linewidth,
  210. height=8cm,
  211. grid style={dashed, gray!30},
  212. xmin=-3, % start the diagram at this x-coordinate
  213. xmax= 3, % end the diagram at this x-coordinate
  214. ymin=-0.25, % start the diagram at this y-coordinate
  215. ymax= 9, % end the diagram at this y-coordinate
  216. axis background/.style={fill=white},
  217. xlabel=$x$,
  218. ylabel=$y$,
  219. %xticklabels={-2,-1.6,...,7},
  220. %yticklabels={-8,-7,...,8},
  221. tick align=outside,
  222. minor tick num=-3,
  223. enlargelimits=true,
  224. tension=0.08]
  225. \addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
  226. \addplot[domain=-3:3, thick,samples=50, green] {x*x};
  227. \addplot[domain=-3:3, thick,samples=50, blue] {x*x + x};
  228. \addplot[domain=-3:3, thick,samples=50, orange] {x*x + 2*x};
  229. \addplot[domain=-3:3, thick,samples=50, black] {-x*x + 6};
  230. \addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
  231. \addlegendentry{$f_2(x)=x^2$}
  232. \addlegendentry{$f_3(x)=x^2+x$}
  233. \addlegendentry{$f_4(x)=x^2+2x$}
  234. \addlegendentry{$f_5(x)=-x^2+6$}
  235. \end{axis}
  236. \end{tikzpicture}
  237. \caption{Quadratic functions}
  238. \end{figure}
  239. \subsection{Calculate points with minimal distance}
  240. In this case, $d_{P,f}^2$ is polynomial of degree 4.
  241. We use Theorem~\ref{thm:required-extremum-property}:\nobreak
  242. \begin{align}
  243. 0 &\overset{!}{=} (d_{P,f}^2)'\\
  244. &= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
  245. &= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
  246. \Leftrightarrow 0 &\overset{!}{=} -x_p + x -y_p f'(x) + f(x) \cdot f'(x) \rlap{\hspace*{3em}(divide by 2)}\label{eq:minimizingFirstDerivative}\\
  247. &= -x_p + x -y_p (2ax+b) + (ax^2+bx+c)(2ax+b)\\
  248. &= -x_p + x -y_p \cdot 2ax- y_p b + (2 a^2 x^3+2 a b x^2+2 a c x+ab x^2+b^2 x+bc)\\
  249. &= -x_p + x -2y_p ax- y_p b + (2a^2 x^3 + 3 ab x^2 + 2acx + b^2 x + bc)\\
  250. &= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)
  251. \end{align}
  252. %\begin{align}
  253. % 0 &\overset{!}{=}(d_{P,f}^2)''\\
  254. % &= 2 - 2y_p f''(x) + \left ( 2 f(x) \cdot f'(x) \right )' \rlap{\hspace*{3em}(Eq. \ref{eq:minimizingFirstDerivative})}\\
  255. % &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x) \cdot f'(x) + f(x) \cdot f''(x) \right ) \rlap{\hspace*{3em}(product rule)}\\
  256. % &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x)^2 + f(x) \cdot f''(x) \right )\\
  257. % &= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
  258. %\end{align}
  259. This is an algebraic equation of degree 3.
  260. There can be up to 3 solutions in such an equation. Those solutions
  261. can be found with a closed formula.
  262. \todo[inline]{Where are those closed formulas?}
  263. \begin{example}
  264. Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
  265. So $f(x) = x^2 + 1$ and $P(0, 1)$.
  266. \begin{align}
  267. 0 &\stackrel{!}{=} 4 x^3 - 2x\\
  268. &=2x(2x^2 - 1)\\
  269. \Rightarrow x_1 &= 0 \;\;\; x_{2,3} = \pm \frac{1}{\sqrt{2}}
  270. \end{align}
  271. As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
  272. \end{example}
  273. \subsection{Number of points with minimal distance}
  274. It is obvious that a quadratic function can have two points with
  275. minimal distance.
  276. For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
  277. has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.\todo{exact example?}
  278. As discussed before, there cannot be more than 3 points on the graph
  279. of $f$ next to $P$.
  280. \todo[inline]{But can there be three points? O.b.d.A: $a > 0$.
  281. As $c$ is moves the curve only up and down, we can o.b.d.A assume
  282. that $c=0$.
  283. $x=-\frac{b}{2a}$ is the minimum of $f$. If there are 3 points, this will
  284. be one of them. The other two ones are symmetric by an axis through
  285. $-\frac{b}{2a}$}
  286. \begin{figure}[htp]
  287. \centering
  288. \begin{tikzpicture}
  289. \begin{axis}[
  290. legend pos=north west,
  291. axis x line=middle,
  292. axis y line=middle,
  293. grid = major,
  294. width=0.8\linewidth,
  295. height=8cm,
  296. grid style={dashed, gray!30},
  297. xmin=-0.7, % start the diagram at this x-coordinate
  298. xmax= 0.7, % end the diagram at this x-coordinate
  299. ymin=-0.25, % start the diagram at this y-coordinate
  300. ymax= 0.5, % end the diagram at this y-coordinate
  301. axis background/.style={fill=white},
  302. xlabel=$x$,
  303. ylabel=$y$,
  304. %xticklabels={-2,-1.6,...,7},
  305. %yticklabels={-8,-7,...,8},
  306. tick align=outside,
  307. minor tick num=-3,
  308. enlargelimits=true,
  309. tension=0.08]
  310. \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
  311. \draw (axis cs:0,0.5) circle[radius=0.5];
  312. \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
  313. \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
  314. \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
  315. \addlegendentry{$f(x)=x^2$}
  316. \end{axis}
  317. \end{tikzpicture}
  318. \caption{3 points with minimal distance?}
  319. \end{figure}
  320. \clearpage
  321. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  322. % Cubic %
  323. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  324. \section{Minimal distance to a cubic function}
  325. Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
  326. with $a \in \mdr \setminus \Set{0}$ and
  327. $b, c, d \in \mdr$ be a function.
  328. \begin{figure}[htp]
  329. \centering
  330. \begin{tikzpicture}
  331. \begin{axis}[
  332. legend pos=south east,
  333. axis x line=middle,
  334. axis y line=middle,
  335. grid = major,
  336. width=0.8\linewidth,
  337. height=8cm,
  338. grid style={dashed, gray!30},
  339. xmin=-3, % start the diagram at this x-coordinate
  340. xmax= 3, % end the diagram at this x-coordinate
  341. ymin=-3, % start the diagram at this y-coordinate
  342. ymax= 3, % end the diagram at this y-coordinate
  343. axis background/.style={fill=white},
  344. xlabel=$x$,
  345. ylabel=$y$,
  346. %xticklabels={-2,-1.6,...,7},
  347. %yticklabels={-8,-7,...,8},
  348. tick align=outside,
  349. minor tick num=-3,
  350. enlargelimits=true,
  351. tension=0.08]
  352. \addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
  353. \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
  354. \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
  355. \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
  356. \addlegendentry{$f_1(x)=x^3$}
  357. \addlegendentry{$f_2(x)=x^3 + x^2$}
  358. \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
  359. \addlegendentry{$f_1(x)=x^3 + x$}
  360. \end{axis}
  361. \end{tikzpicture}
  362. \caption{Cubic functions}
  363. \end{figure}
  364. %
  365. %\subsection{Special points}
  366. %\todo[inline]{Write this}
  367. %
  368. %\subsection{Voronoi}
  369. %
  370. %For $b^2 \geq 3ac$
  371. %
  372. %\todo[inline]{Write this}
  373. \subsection{Calculate points with minimal distance}
  374. When you want to calculate points with minimal distance, you can
  375. take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
  376. \begin{align}
  377. 0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
  378. &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
  379. &= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
  380. &= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
  381. \end{align}
  382. General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
  383. Although here seems to be more structure, the resulting algebraic
  384. equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
  385. \begin{align}
  386. 0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
  387. &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
  388. & &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
  389. 0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
  390. \end{align}
  391. \begin{enumerate}
  392. \item With $a$, we can get any value of $\tilde{a} \in \mdr \setminus \Set{0}$.
  393. \item With $b$, we can get any value of $\tilde{b} \in \mdr \setminus \Set{0}$.
  394. \item With $c$, we can get any value of $\tilde{c} \in \mdr$.
  395. \item With $d$, we can get any value of $\tilde{d} \in \mdr$.
  396. \item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
  397. \item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
  398. \end{enumerate}
  399. The first restriction only guaratees that we have a polynomial of
  400. degree 5. The second one is necessary, to get a high range of
  401. $\tilde{e}$.
  402. This means, that there is no solution formula for the problem of
  403. finding the closest points on a cubic function to a given point.
  404. \subsection{Number of points with minimal distance}
  405. As there is an algebraic equation of degree 5, there cannot be more
  406. than 5 solutions.
  407. \todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
  408. After looking at function graphs of cubic functions, I'm pretty
  409. sure that there cannot be 4 or 5 solutions, no matter how you
  410. chose the cubic function $f$ and $P$.
  411. I'm also pretty sure that there is no polynomial (no matter what degree)
  412. that has more than 3 solutions.}
  413. \todo[inline]{If there is no closed form solution, I want to
  414. describe a numerical solution. I guess Newtons method might be good.}
  415. \end{document}