Symbolverzeichnis.tex 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. %!TEX root = GeoTopo.tex
  2. \markboth{Symbolverzeichnis}{Symbolverzeichnis}
  3. \twocolumn
  4. \chapter*{Symbolverzeichnis}
  5. \addcontentsline{toc}{chapter}{Symbolverzeichnis}
  6. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7. % Mengenoperationen %
  8. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9. \section*{Mengenoperationen}
  10. Seien $A, B$ und $M$ Mengen.
  11. % Set \mylengtha to widest element in first column; adjust
  12. % \mylengthb so that the width of the table is \columnwidth
  13. \settowidth\mylengtha{$A \subsetneq B$}
  14. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  15. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  16. $A^C $ & Komplement von $A$\\
  17. $\mathcal{P}(M)$ & Potenzmenge von $M$\\
  18. $\overline{M}$ & Abschluss von $M$\\
  19. $\partial M$ & Rand der Menge $M$\\
  20. $M^\circ$ & Inneres der Menge $M$\\
  21. $A \times B$ & Kreuzprodukt\\
  22. $A \subseteq B$ & Teilmengenbeziehung\\
  23. $A \subsetneq B$ & echte Teilmengenbeziehung\\
  24. $A \setminus B$ & Differenzmenge\\
  25. $A \cup B$ & Vereinigung\\
  26. $A \dcup B$ & Disjunkte Vereinigung\\
  27. $A \cap B$ & Schnitt\\
  28. \end{xtabular}
  29. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  30. % Geometrie %
  31. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  32. \section*{Geometrie}
  33. \settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
  34. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  35. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  36. $AB$ & Gerade durch die Punkte $A$ und $B$\\
  37. $\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
  38. $\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
  39. $\overline{AB} \cong \overline{CD}$& Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
  40. $|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$\\
  41. \end{xtabular}
  42. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  43. % Gruppen %
  44. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  45. \section*{Gruppen}
  46. Sei $X$ ein topologischer Raum und $K$ ein Körper.
  47. \settowidth\mylengtha{$\Homoo(X)$}
  48. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  49. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  50. $\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
  51. $\Iso(X)$ & Isometrien\-gruppe\\
  52. $\GL_n(K)$ & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
  53. $\SL_n(K)$ & Spezielle lineare Gruppe\\
  54. $\PSL_n(K)$ & Projektive lineare Gruppe\\
  55. $\Perm(X)$ & Permutations\-gruppe\\
  56. $\Sym(X)$ & Symmetrische Gruppe\\
  57. \end{xtabular}
  58. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  59. % Wege %
  60. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  61. \section*{Wege}
  62. Sei $\gamma: I \rightarrow X$ ein Weg.
  63. \settowidth\mylengtha{$\gamma_1 \sim \gamma_2$}
  64. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  65. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  66. $[\gamma]$ & Homotopieklasse von $\gamma$\\
  67. $\gamma_1 * \gamma_2$ & Zusammenhängen von Wegen\\
  68. $\gamma_1 \sim \gamma_2$ & Homotopie von Wegen\\
  69. $\overline{\gamma}(x)$ & Inverser Weg, also $\overline{\gamma}(x) := \gamma(1-x)$\\
  70. $C$ & Bild eines Weges $\gamma$, also $C := \gamma([0,1])$
  71. \end{xtabular}
  72. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  73. % Weiteres %
  74. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  75. \section*{Weiteres}
  76. \settowidth\mylengtha{$\fB_\delta(x)$}
  77. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  78. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  79. $\fB$ & Basis einer Topologie\\
  80. $\fB_\delta(x)$& $\delta$-Kugel um $x$\\
  81. $\calS$ & Subbasis einer Topologie\\
  82. $\fT$ & Topologie\\
  83. \end{xtabular}
  84. \settowidth\mylengtha{$X /_\sim$}
  85. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  86. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  87. $\atlas$ & Atlas\\
  88. $\praum$ & Projektiver Raum\\
  89. $\langle \cdot , \cdot \rangle$ & Skalarprodukt\\
  90. $X /_\sim$ & $X$ modulo $\sim$\\
  91. $[x]_\sim$ & Äquivalenzklassen von $x$ bzgl. $\sim$\\
  92. $\| x \|$ & Norm von $x$\\
  93. $| x |$ & Betrag von $x$\\
  94. $\langle a \rangle$ & Erzeugnis von $a$\\
  95. \end{xtabular}
  96. $S^n\;\;\;$ Sphäre\\
  97. $T^n\;\;\;$ Torus\\
  98. \settowidth\mylengtha{$f^{-1}(M)$}
  99. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  100. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  101. $f \circ g$&Verkettung von $f$ und $g$\\
  102. $\pi_X$ &Projektion auf $X$\\
  103. $f|_U$ $f$ &eingeschränkt auf $U$\\
  104. $f^{-1}(M)$&Urbild von $M$\\
  105. $\rang(M)$ & Rang von $M$\\
  106. $\chi(K)$ & Euler-Charakteristik von $K$\\
  107. $\Delta^k$ & Standard-Simplex\\
  108. $X \# Y$ & Verklebung von $X$ und $Y$\\
  109. $d_n$ & Lineare Abbildung aus \cref{kor:9.11}\\
  110. $A \cong B$& $A$ ist isometrisch zu $B$\\
  111. $f_*$ & Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
  112. \end{xtabular}
  113. \onecolumn
  114. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  115. % Zahlenmengen %
  116. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  117. \section*{Zahlenmengen}
  118. $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
  119. $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
  120. $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
  121. $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
  122. $\mdr_+\;$ Echt positive reele Zahlen\\
  123. $\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
  124. $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
  125. $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
  126. $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
  127. $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
  128. $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
  129. \settowidth\mylengtha{$f:S^1 \hookrightarrow \mdr^2$}
  130. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  131. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  132. $f:S^1 \hookrightarrow \mdr^2$& Einbettung der Kreislinie in die Ebene\\
  133. $\pi_1(X,x)$ & Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
  134. $\Fix(f)$ & Menge der Fixpunkte der Abbildung $f$\\
  135. $\|\cdot\|_2$ & 2-Norm; Euklidische Norm\\
  136. $\kappa$ & Krümmung\\
  137. $\kappa_{\ts{Nor}}$ & Normalenkrümmung\\
  138. $V(f)$ & Nullstellenmenge von $f$\footnotemark
  139. \end{xtabular}
  140. \footnotetext{von \textit{\textbf{V}anishing Set}}
  141. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  142. % Krümmung %
  143. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  144. \section*{Krümmung}
  145. \settowidth\mylengtha{$D_p F: \mdr^2 \rightarrow \mdr^3$}
  146. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  147. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  148. $D_p F: \mdr^2 \rightarrow \mdr^3$& Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
  149. $T_s S$ & Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
  150. $d_s n(x)$ & Weingarten-Abbildung\\
  151. \end{xtabular}
  152. \index{Faser|see{Urbild}}
  153. \index{kongruent|see{isometrisch}}
  154. \index{Kongruenz|see{Isometrie}}