123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- %!TEX root = GeoTopo.tex
- \markboth{Symbolverzeichnis}{Symbolverzeichnis}
- \twocolumn
- \chapter*{Symbolverzeichnis}
- \addcontentsline{toc}{chapter}{Symbolverzeichnis}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Mengenoperationen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Mengenoperationen}
- Seien $A, B$ und $M$ Mengen.
- % Set \mylengtha to widest element in first column; adjust
- % \mylengthb so that the width of the table is \columnwidth
- \settowidth\mylengtha{$A \subsetneq B$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $A^C $ & Komplement von $A$\\
- $\mathcal{P}(M)$ & Potenzmenge von $M$\\
- $\overline{M}$ & Abschluss von $M$\\
- $\partial M$ & Rand der Menge $M$\\
- $M^\circ$ & Inneres der Menge $M$\\
- $A \times B$ & Kreuzprodukt\\
- $A \subseteq B$ & Teilmengenbeziehung\\
- $A \subsetneq B$ & echte Teilmengenbeziehung\\
- $A \setminus B$ & Differenzmenge\\
- $A \cup B$ & Vereinigung\\
- $A \dcup B$ & Disjunkte Vereinigung\\
- $A \cap B$ & Schnitt\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Geometrie %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Geometrie}
- \settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $AB$ & Gerade durch die Punkte $A$ und $B$\\
- $\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
- $\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
- $\overline{AB} \cong \overline{CD}$& Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
- $|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Gruppen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Gruppen}
- Sei $X$ ein topologischer Raum und $K$ ein Körper.
- \settowidth\mylengtha{$\Homoo(X)$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
- $\Iso(X)$ & Isometrien\-gruppe\\
- $\GL_n(K)$ & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
- $\SL_n(K)$ & Spezielle lineare Gruppe\\
- $\PSL_n(K)$ & Projektive lineare Gruppe\\
- $\Perm(X)$ & Permutations\-gruppe\\
- $\Sym(X)$ & Symmetrische Gruppe\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Wege %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Wege}
- Sei $\gamma: I \rightarrow X$ ein Weg.
- \settowidth\mylengtha{$\gamma_1 \sim \gamma_2$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $[\gamma]$ & Homotopieklasse von $\gamma$\\
- $\gamma_1 * \gamma_2$ & Zusammenhängen von Wegen\\
- $\gamma_1 \sim \gamma_2$ & Homotopie von Wegen\\
- $\overline{\gamma}(x)$ & Inverser Weg, also $\overline{\gamma}(x) := \gamma(1-x)$\\
- $C$ & Bild eines Weges $\gamma$, also $C := \gamma([0,1])$
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Weiteres %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Weiteres}
- \settowidth\mylengtha{$\fB_\delta(x)$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\fB$ & Basis einer Topologie\\
- $\fB_\delta(x)$& $\delta$-Kugel um $x$\\
- $\calS$ & Subbasis einer Topologie\\
- $\fT$ & Topologie\\
- \end{xtabular}
- \settowidth\mylengtha{$X /_\sim$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\atlas$ & Atlas\\
- $\praum$ & Projektiver Raum\\
- $\langle \cdot , \cdot \rangle$ & Skalarprodukt\\
- $X /_\sim$ & $X$ modulo $\sim$\\
- $[x]_\sim$ & Äquivalenzklassen von $x$ bzgl. $\sim$\\
- $\| x \|$ & Norm von $x$\\
- $| x |$ & Betrag von $x$\\
- $\langle a \rangle$ & Erzeugnis von $a$\\
- \end{xtabular}
- $S^n\;\;\;$ Sphäre\\
- $T^n\;\;\;$ Torus\\
- \settowidth\mylengtha{$f^{-1}(M)$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $f \circ g$&Verkettung von $f$ und $g$\\
- $\pi_X$ &Projektion auf $X$\\
- $f|_U$ $f$ &eingeschränkt auf $U$\\
- $f^{-1}(M)$&Urbild von $M$\\
- $\rang(M)$ & Rang von $M$\\
- $\chi(K)$ & Euler-Charakteristik von $K$\\
- $\Delta^k$ & Standard-Simplex\\
- $X \# Y$ & Verklebung von $X$ und $Y$\\
- $d_n$ & Lineare Abbildung aus \cref{kor:9.11}\\
- $A \cong B$& $A$ ist isometrisch zu $B$\\
- $f_*$ & Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
- \end{xtabular}
- \onecolumn
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Zahlenmengen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Zahlenmengen}
- $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
- $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
- $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
- $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
- $\mdr_+\;$ Echt positive reele Zahlen\\
- $\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
- $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
- $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
- $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
- $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
- $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
- \settowidth\mylengtha{$f:S^1 \hookrightarrow \mdr^2$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $f:S^1 \hookrightarrow \mdr^2$& Einbettung der Kreislinie in die Ebene\\
- $\pi_1(X,x)$ & Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
- $\Fix(f)$ & Menge der Fixpunkte der Abbildung $f$\\
- $\|\cdot\|_2$ & 2-Norm; Euklidische Norm\\
- $\kappa$ & Krümmung\\
- $\kappa_{\ts{Nor}}$ & Normalenkrümmung\\
- $V(f)$ & Nullstellenmenge von $f$\footnotemark
- \end{xtabular}
- \footnotetext{von \textit{\textbf{V}anishing Set}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Krümmung %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Krümmung}
- \settowidth\mylengtha{$D_p F: \mdr^2 \rightarrow \mdr^3$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $D_p F: \mdr^2 \rightarrow \mdr^3$& Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
- $T_s S$ & Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
- $d_s n(x)$ & Weingarten-Abbildung\\
- \end{xtabular}
- \index{Faser|see{Urbild}}
- \index{kongruent|see{isometrisch}}
- \index{Kongruenz|see{Isometrie}}
|