| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- % Source: http://www.texample.net/tikz/examples/map-projections/
- \documentclass[varwidth=true, border=2pt]{standalone}
- \usepackage{pgfplots}
- \usepackage{tikz}
- \usetikzlibrary{calc,fadings,decorations.pathreplacing}
- \begin{document}
- %% helper macros
- \begin{tikzpicture} % CENT
- \newcommand\pgfmathsinandcos[3]{%
- \pgfmathsetmacro#1{sin(#3)}%
- \pgfmathsetmacro#2{cos(#3)}%
- }
- \newcommand\LongitudePlane[3][current plane]{%
- \pgfmathsinandcos\sinEl\cosEl{#2} % elevation
- \pgfmathsinandcos\sint\cost{#3} % azimuth
- \tikzset{#1/.estyle={cm={\cost,\sint*\sinEl,0,\cosEl,(0,0)}}}
- }
- \newcommand\LatitudePlane[3][current plane]{%
- \pgfmathsinandcos\sinEl\cosEl{#2} % elevation
- \pgfmathsinandcos\sint\cost{#3} % latitude
- \pgfmathsetmacro\yshift{\cosEl*\sint}
- \tikzset{#1/.estyle={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %
- }
- \newcommand\DrawLongitudeCircle[2][1]{
- \LongitudePlane{\angEl}{#2}
- \tikzset{current plane/.prefix style={scale=#1}}
- % angle of "visibility"
- \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} %
- \draw[current plane] (\angVis:1) arc (\angVis:\angVis+180:1);
- \draw[current plane,dashed] (\angVis-180:1) arc (\angVis-180:\angVis:1);
- }
- \newcommand\DrawLatitudeCircle[2][1]{
- \LatitudePlane{\angEl}{#2}
- \tikzset{current plane/.prefix style={scale=#1}}
- \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)}
- % angle of "visibility"
- \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))}
- \draw[current plane] (\angVis:1) arc (\angVis:-\angVis-180:1);
- \draw[current plane,dashed] (180-\angVis:1) arc (180-\angVis:\angVis:1);
- }
- \tikzset{%
- >=latex, % option for nice arrows
- inner sep=0pt,%
- outer sep=2pt,%
- mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt,
- fill=black,circle}%
- }
- %% some definitions
- \def\R{2.5} % sphere radius
- \def\angEl{35} % elevation angle
- \def\angAz{-105} % azimuth angle
- \def\angPhi{-40} % longitude of point P
- \def\angBeta{19} % latitude of point P
- %% working planes
- \pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole
- \tikzset{xyplane/.estyle={cm={cos(\angAz),sin(\angAz)*sin(\angEl),-sin(\angAz),
- cos(\angAz)*sin(\angEl),(0,-\H)}}}
- \LongitudePlane[xzplane]{\angEl}{\angAz}
- \LongitudePlane[pzplane]{\angEl}{\angPhi}
- \LatitudePlane[equator]{\angEl}{0}
- %% draw xyplane and sphere
- \draw[xyplane] (-2*\R,-2*\R) rectangle (2.2*\R,2.8*\R);
- \fill[ball color=white] (0,0) circle (\R); % 3D lighting effect
- \draw (0,0) circle (\R);
- %% characteristic points
- \coordinate (O) at (0,0);
- \coordinate[mark coordinate] (N) at (0,\H);
- \coordinate[mark coordinate] (S) at (0,-\H);
- \path[pzplane] (\angBeta:\R) coordinate[mark coordinate] (P);
- \path[pzplane] (\R,0) coordinate (PE);
- \path[xzplane] (\R,0) coordinate (XE);
- \path (PE) ++(0,-\H) coordinate (Paux); % to aid Phat calculation
- \coordinate[mark coordinate] (Phat) at (intersection cs: first line={(N)--(P)},
- second line={(S)--(Paux)});
- %% draw meridians and latitude circles
- \DrawLatitudeCircle[\R]{0} % equator
- \DrawLongitudeCircle[\R]{\angAz} % xzplane
- \DrawLongitudeCircle[\R]{\angAz+90} % yzplane
- \DrawLongitudeCircle[\R]{\angPhi} % pzplane
- %% draw xyz coordinate system
- \draw[xyplane,<->] (1.8*\R,0) node[below] {$x,\xi$} -- (0,0) -- (0,2.4*\R)
- node[right] {$y$};
- \draw[->] (0,-\H) -- (0,1.6*\R) node[above] {$z$};
- %% draw lines and put labels
- \draw[blue,dashed] (P) -- (N) +(0.3ex,0.6ex) node[above left,black] {$\mathbf{N}$};
- \draw[blue] (P) -- (Phat) node[above right,black] {$\mathbf{\hat{P}}$};
- \path (S) +(0.4ex,-0.4ex) node[below] {$\mathbf{0}$};
- \draw (P) node[above right] {$\mathbf{P}$};
- \end{tikzpicture}
- \end{document}
|