123456789101112131415161718192021222324252627282930313233343536373839404142 |
- \documentclass[a4paper]{scrartcl}
- \usepackage[english]{babel}
- \usepackage[utf8]{inputenc}
- \usepackage{amssymb,amsmath}
- \newtheorem{theorem}{Theorem}
- \newenvironment{proof}{\paragraph{Proof:}}{\hfill$\square$}
- \newcommand{\Prob}{\mathbb{P}}
- \begin{document}
- \begin{theorem}
- Let $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $X \sim e^Y$.
- Then X has the density
- \[f_X(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2 \pi}}\exp{- \frac{(\log x - \mu)^2}{2 \sigma^2}} &\text{if } x > 0\\
- 0 & \text{otherwise}\end{cases}\]
- \end{theorem}
- \begin{proof}
- \begin{align}
- \Prob(X \leq t) &= \Prob(e^Y \leq t)\\
- &= \begin{cases}\Prob(Y \leq \log(t)) &\text{if } x > 0\\
- 0 &\text{otherwise}
- \end{cases}
- \end{align}
- Obviously, the density $f_X(x) = 0$ for $x \leq 0$. Now continue with
- $t > 0$:
- \begin{align}
- \Prob(X \leq t) &= \Prob(Y \leq \log(t))\\
- &= \Phi_{\mu, \sigma^2}(\log(t))\\
- &= \Phi_{0, 1} \left (\frac{\log(t) - \mu}{\sigma} \right)\\
- f_X(x) &= \frac{\partial}{\partial x} \Phi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
- &= \left (\frac{\partial}{\partial x} \left (\frac{\log(x) - \mu}{\sigma} \right) \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
- &= \left (\frac{\sigma \cdot \frac{1}{x}}{\sigma^2} \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
- &= \frac{1}{x \sigma} \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
- &= \frac{1}{x \sigma} \cdot \frac{1}{\sqrt{2\pi}} \exp \left (-\frac{1}{2} \cdot {\left(\frac{\log(x) - \mu}{\sigma} \right )}^2 \right )
- \end{align}
- \end{proof}
- \end{document}
|