prove-transform-random-variable-theorem.tex 1.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. \documentclass[a4paper]{scrartcl}
  2. \usepackage[english]{babel}
  3. \usepackage[utf8]{inputenc}
  4. \usepackage{amssymb,amsmath}
  5. \newtheorem{theorem}{Theorem}
  6. \newenvironment{proof}{\paragraph{Proof:}}{\hfill$\square$}
  7. \newcommand{\Prob}{\mathbb{P}}
  8. \begin{document}
  9. \begin{theorem}
  10. Let $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $X \sim e^Y$.
  11. Then X has the density
  12. \[f_X(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2 \pi}}\exp{- \frac{(\log x - \mu)^2}{2 \sigma^2}} &\text{if } x > 0\\
  13. 0 & \text{otherwise}\end{cases}\]
  14. \end{theorem}
  15. \begin{proof}
  16. \begin{align}
  17. \Prob(X \leq t) &= \Prob(e^Y \leq t)\\
  18. &= \begin{cases}\Prob(Y \leq \log(t)) &\text{if } x > 0\\
  19. 0 &\text{otherwise}
  20. \end{cases}
  21. \end{align}
  22. Obviously, the density $f_X(x) = 0$ for $x \leq 0$. Now continue with
  23. $t > 0$:
  24. \begin{align}
  25. \Prob(X \leq t) &= \Prob(Y \leq \log(t))\\
  26. &= \Phi_{\mu, \sigma^2}(\log(t))\\
  27. &= \Phi_{0, 1} \left (\frac{\log(t) - \mu}{\sigma} \right)\\
  28. f_X(x) &= \frac{\partial}{\partial x} \Phi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
  29. &= \left (\frac{\partial}{\partial x} \left (\frac{\log(x) - \mu}{\sigma} \right) \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
  30. &= \left (\frac{\sigma \cdot \frac{1}{x}}{\sigma^2} \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
  31. &= \frac{1}{x \sigma} \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
  32. &= \frac{1}{x \sigma} \cdot \frac{1}{\sqrt{2\pi}} \exp \left (-\frac{1}{2} \cdot {\left(\frac{\log(x) - \mu}{\sigma} \right )}^2 \right )
  33. \end{align}
  34. \end{proof}
  35. \end{document}