Analysis_Wichtige_Formeln.tex 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. \documentclass[a4paper,10pt]{article}
  2. \usepackage{amssymb, amsmath}
  3. \DeclareMathOperator{\arcsinh}{arcsinh}
  4. \DeclareMathOperator{\arccosh}{arccosh}
  5. \DeclareMathOperator{\arctanh}{arctanh}
  6. \usepackage[utf8]{inputenc} % this is needed for umlauts
  7. \usepackage[ngerman]{babel} % this is needed for umlauts
  8. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  9. %layout
  10. \usepackage[margin=2.5cm]{geometry}
  11. \usepackage{parskip}
  12. \pdfinfo{
  13. /Author (Peter Merkert, Martin Thoma)
  14. /Title (Wichtige Formeln der Analysis I)
  15. /CreationDate (D:20120221095400)
  16. /Subject (Analysis I)
  17. /Keywords (Analysis I; Formeln)
  18. }
  19. %\everymath={\displaystyle}
  20. \begin{document}
  21. \title{Analysis Formelsammlung}
  22. \author{Peter Merkert, Martin Thoma}
  23. \date{21. Februar 2012}
  24. \section{Grenzwerte}
  25. \begin{table}[ht]
  26. \begin{minipage}[b]{0.5\linewidth}\centering
  27. \begin{align*}
  28. \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
  29. \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
  30. \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
  31. \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
  32. \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
  33. \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
  34. \end{align*}
  35. \end{minipage}
  36. \hspace{0.5cm}
  37. \begin{minipage}[b]{0.5\linewidth}
  38. \centering
  39. \begin{align*}
  40. \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
  41. \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
  42. e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\
  43. \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\
  44. \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
  45. 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
  46. \end{align*}
  47. \end{minipage}
  48. \end{table}
  49. \section{Zusammenhänge}
  50. \begin{align*}
  51. (\cos x)^2 + (\sin x)^2 &= 1 \\
  52. (\cosh x)^2 - (\sinh x)^2 &= 1 \\
  53. \tan x &= \frac {\sin x}{\cos x} \\
  54. \tanh x &= \frac {\sinh x}{\cosh x} \\
  55. (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
  56. \end{align*}
  57. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  58. \section{Ableitungen}
  59. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  60. \begin{table}[ht]
  61. \begin{minipage}[b]{0.3\linewidth}\centering
  62. \begin{align*}
  63. (\sin x)' &= \cos x \\
  64. (\cos x)' &= -\sin x \\
  65. (\tan x)' &= \frac{1}{\cos^2 x} \\
  66. (\sinh x)' &= \cosh x \\
  67. (\cosh x)' &= \sinh x \\
  68. \end{align*}
  69. \end{minipage}
  70. \hspace{0.1cm}
  71. \begin{minipage}[b]{0.3\linewidth}
  72. \centering
  73. \begin{align*}
  74. (\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\
  75. (\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\
  76. (\arctan x)' &= \frac {1}{1 + x^2} \\
  77. % (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\
  78. % (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\
  79. % (\arctanh x)' &= \frac {1}{1 - x^2}
  80. \end{align*}
  81. \end{minipage}
  82. \hspace{0.1cm}
  83. \begin{minipage}[b]{0.3\linewidth}
  84. \centering
  85. \begin{align*}
  86. (\log x)' &= \frac{1}{x} \\
  87. \end{align*}
  88. \end{minipage}
  89. \end{table}
  90. \section{Werte}
  91. \begin{table}[h]
  92. \centering
  93. \begin{tabular}{llll}
  94. \(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\
  95. \(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\
  96. \end{tabular}
  97. \end{table}
  98. \end{document}