cubic-functions.tex 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. \chapter{Cubic functions}
  2. \section{Defined on $\mdr$}
  3. Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
  4. with $a \in \mdr \setminus \Set{0}$ and
  5. $b, c, d \in \mdr$ be a function.
  6. \begin{figure}[htp]
  7. \centering
  8. \begin{tikzpicture}
  9. \begin{axis}[
  10. legend pos=south east,
  11. axis x line=middle,
  12. axis y line=middle,
  13. grid = major,
  14. width=0.8\linewidth,
  15. height=8cm,
  16. grid style={dashed, gray!30},
  17. xmin=-3, % start the diagram at this x-coordinate
  18. xmax= 3, % end the diagram at this x-coordinate
  19. ymin=-3, % start the diagram at this y-coordinate
  20. ymax= 3, % end the diagram at this y-coordinate
  21. axis background/.style={fill=white},
  22. xlabel=$x$,
  23. ylabel=$y$,
  24. tick align=outside,
  25. minor tick num=-3,
  26. enlargelimits=true,
  27. tension=0.08]
  28. \addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
  29. \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
  30. \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
  31. \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
  32. \addlegendentry{$f_1(x)=x^3$}
  33. \addlegendentry{$f_2(x)=x^3 + x^2$}
  34. \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
  35. \addlegendentry{$f_1(x)=x^3 + x$}
  36. \end{axis}
  37. \end{tikzpicture}
  38. \caption{Cubic functions}
  39. \end{figure}
  40. %
  41. %\section{Special points}
  42. %\todo[inline]{Write this}
  43. %
  44. %\section{Voronoi}
  45. %
  46. %For $b^2 \geq 3ac$
  47. %
  48. %\todo[inline]{Write this}
  49. \subsection{Calculate points with minimal distance}
  50. \begin{theorem}
  51. There cannot be an algebraic solution to the problem of finding
  52. a closest point $(x, f(x))$ to a given point $P$ when $f$ is
  53. a polynomial function of degree $3$ or higher.
  54. \end{theorem}
  55. \begin{proof}
  56. Suppose you could solve the closest point problem for arbitrary
  57. cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$.
  58. Then you could solve the following problem for $x$:
  59. \begin{align}
  60. 0 &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )'\\
  61. &=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
  62. &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
  63. &= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
  64. &= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
  65. \end{align}
  66. General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
  67. Although here seems to be more structure, the resulting algebraic
  68. equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
  69. \begin{align}
  70. 0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
  71. &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
  72. & &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
  73. 0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
  74. \end{align}
  75. \begin{enumerate}
  76. \item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
  77. \item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
  78. \item With $c$, we can get any value of $\tilde{c} \in \mdr$.
  79. \item With $d$, we can get any value of $\tilde{d} \in \mdr$.
  80. \item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
  81. \item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
  82. \end{enumerate}
  83. The first restriction guaratees that we have a polynomial of
  84. degree 5. The second one is necessary, to get a high range of
  85. $\tilde{e}$.
  86. This means, that there is no solution formula for the problem of
  87. finding the closest points on a cubic function to a given point,
  88. because if there was one, you could use this formula for finding
  89. roots of polynomials of degree 5. $\qed$
  90. \end{proof}
  91. \subsection{Another approach}
  92. \todo[inline]{Currently, this is only an idea. It might be usefull
  93. to move the cubic function $f$ such that $f$ is point symmetric
  94. to the origin. But I'm not sure how to make use of this symmetry.}
  95. Just like we moved the function $f$ and the point to get in a
  96. nicer situation, we can apply this approach for cubic functions.
  97. \begin{figure}[htp]
  98. \centering
  99. \begin{tikzpicture}
  100. \begin{axis}[
  101. legend pos=south east,
  102. axis x line=middle,
  103. axis y line=middle,
  104. grid = major,
  105. width=0.8\linewidth,
  106. height=8cm,
  107. grid style={dashed, gray!30},
  108. xmin=-3, % start the diagram at this x-coordinate
  109. xmax= 3, % end the diagram at this x-coordinate
  110. ymin=-3, % start the diagram at this y-coordinate
  111. ymax= 3, % end the diagram at this y-coordinate
  112. axis background/.style={fill=white},
  113. xlabel=$x$,
  114. ylabel=$y$,
  115. tick align=outside,
  116. minor tick num=-3,
  117. enlargelimits=true,
  118. tension=0.08]
  119. \addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
  120. \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
  121. \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x};
  122. \addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
  123. \addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
  124. \addlegendentry{$f_1(x)=x^3$}
  125. \addlegendentry{$f_2(x)=x^3 + x$}
  126. \addlegendentry{$f_1(x)=x^3 - x$}
  127. \addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
  128. \addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
  129. \end{axis}
  130. \end{tikzpicture}
  131. \caption{Cubic functions with $b = d = 0$}
  132. \end{figure}
  133. First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
  134. \[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
  135. because
  136. \begin{align}
  137. f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\
  138. &= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right )
  139. +b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right )
  140. +c x - \frac{bc}{3a} + d\\
  141. &= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\
  142. & \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\
  143. & \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\
  144. &= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
  145. \end{align}
  146. \subsection{Number of points with minimal distance}
  147. As this leads to a polynomial of degree 5 of which we have to find
  148. roots, there cannot be more than 5 solutions.
  149. \todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
  150. After looking at function graphs of cubic functions, I'm pretty
  151. sure that there cannot be 4 or 5 solutions, no matter how you
  152. chose the cubic function $f$ and $P$.
  153. I'm also pretty sure that there is no polynomial (no matter what degree)
  154. that has more than 3 solutions.}
  155. \subsection{Interpolation and approximation}
  156. \subsubsection{Quadratic spline interpolation}
  157. You could interpolate the cubic function by a quadratic spline.
  158. \subsubsection{Bisection method}
  159. \todo[inline]{TODO}
  160. \subsubsection{Newtons method}
  161. One way to find roots of functions is Newtons method. It gives an
  162. iterative computation procedure that can converge quadratically
  163. if some conditions are met:
  164. \begin{theorem}[local quadratic convergence of Newton's method]
  165. Let $D \subseteq \mdr^n$ be open and $f: D \rightarrow \mdr^n \in C^2(\mdr)$.
  166. Let $x^* \in D$ with $f(x^*) = 0$ and the Jaccobi-Matrix $f'(x^*)$
  167. should not be invertable when evaluated at the root.
  168. Then there is a sphere
  169. \[K := K_\rho(x^*) = \Set{x \in \mdr^n | \|x- x^*\|_\infty \leq \rho} \subseteq D\]
  170. such that $x^*$ is the only root of $f$ in $K$. Furthermore,
  171. the elements of the sequence
  172. \[ x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}\]
  173. are for every starting value $x_0 \in K$ again in $K$ and
  174. \[\lim_{n \rightarrow \infty} x_k = x^*\]
  175. Also, there is a constant $C > 0$ such that
  176. \[\|x^* - x_{n+1} \| = C \|x^* - x_n\|^2 \text{ for } n \in \mathbb{N}_0\|\]
  177. \end{theorem}
  178. The approach is extraordinary simple. You choose a starting value
  179. $x_0$ and compute
  180. \[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
  181. As soon as the values don't change much, you are close to a root.
  182. The problem of this approach is choosing a starting value that is
  183. close enough to the root. So we have to have a \enquote{good}
  184. initial guess.
  185. \subsubsection{Quadratic minimization}
  186. \todo[inline]{TODO}
  187. \clearpage
  188. \section{Defined on a closed interval $[a,b] \subseteq \mdr$}