problem-description.tex 1.5 KB

1234567891011121314151617181920212223242526272829303132333435
  1. \chapter{Description of the Problem}
  2. Let $f: D \rightarrow \mdr$ with $D \subseteq \mdr$ be a polynomial function and $P \in \mdr^2$
  3. be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
  4. be the Euklidean distance of $P$ to a point $\left (x, f(x) \right )$
  5. on the graph of $f$:
  6. \[d_{P,f} (x) := \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\]
  7. Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for given $f$ and $P$:
  8. \[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
  9. But minimizing $d_{P,f}$ is the same as minimizing
  10. $d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
  11. In order to solve the minimal distance problem, Fermat's theorem
  12. about stationary points will be tremendously usefull:
  13. \begin{theorem}[Fermat's theorem about stationary points]\label{thm:fermats-theorem}
  14. Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
  15. Then: $f'(x_0) = 0$.
  16. \end{theorem}
  17. So in fact you can calculate the roots of $(d_{P,f}(x))'$ to get
  18. candidates for minimal distance. These candidates include all points
  19. with minimal distance, but might also contain more. Example~\ref{ex:false-positive}
  20. shows such a situation.
  21. Let $S_n$ be the function that returns the set of solutions for a
  22. polynomial $f$ of degree $n$ and a point $P$:
  23. \[S_n: \Set{\text{Polynomials of degree } n \text{ defined on } \mdr} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})\]
  24. \[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)} = M\]
  25. If possible, I will explicitly give this function.