Symbolverzeichnis.tex 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. \markboth{Symbolverzeichnis}{Symbolverzeichnis}
  2. \twocolumn
  3. \chapter*{Symbolverzeichnis}
  4. \addcontentsline{toc}{chapter}{Symbolverzeichnis}
  5. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6. % Mengenoperationen %
  7. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8. \section*{Mengenoperationen}
  9. $A^C\;\;\;$ Komplement der Menge $A$\\
  10. $\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
  11. $\overline{M}\;\;\;$ Abschluss der Menge $M$\\
  12. $\partial M\;\;\;$ Rand der Menge $M$\\
  13. $M^\circ\;\;\;$ Inneres der Menge $M$\\
  14. $A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
  15. $A \subseteq B\;\;\;$ Teilmengenbeziehung\\
  16. $A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
  17. $A \setminus B\;\;\;$ $A$ ohne $B$\\
  18. $A \cup B\;\;\;$ Vereinigung\\
  19. $A \dcup B\;\;\;$ Disjunkte Vereinigung\\
  20. $A \cap B\;\;\;$ Schnitt\\
  21. \section*{Geometrie}
  22. $AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
  23. $\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
  24. $\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
  25. $|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
  26. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  27. % Gruppen %
  28. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  29. \section*{Gruppen}
  30. $\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
  31. $\Iso(X)\;\;\;$ Isometriengruppe\\
  32. $\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
  33. $\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
  34. $\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
  35. $\Perm(X)\;\;\;$ Permutationsgruppe\\
  36. $\Sym(X)\;\;\;$ Symmetrische Gruppe
  37. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  38. % Gruppen %
  39. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  40. \section*{Wege}
  41. $[\gamma]\;\;\;$ Homotopieklasse eines Weges $\gamma$\\
  42. $\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
  43. $\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
  44. $\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
  45. $C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$
  46. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  47. % Weiteres %
  48. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  49. \section*{Weiteres}
  50. $\fB\;\;\;$ Basis einer Topologie\\
  51. $\calS\;\;\;$ Subbasis einer Topologie\\
  52. $\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
  53. $\fT\;\;\;$ Topologie\\
  54. $\atlas\;\;\;$ Atlas\\
  55. $\praum\;\;\;$ Projektiver Raum\\
  56. $\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
  57. $X /_\sim\;\;\;$ $X$ modulo $\sim$\\
  58. $[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
  59. $\| x \|\;\;\;$ Norm von $x$\\
  60. $| x |\;\;\;$ Betrag von $x$\\
  61. $\langle a \rangle\;\;\;$ Erzeugnis von $a$\\
  62. $S^n\;\;\;$ Sphäre\\
  63. $T^n\;\;\;$ Torus\\
  64. $f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
  65. $\pi_X\;\;\;$ Projektion auf $X$\\
  66. $f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
  67. $f^{-1}(M)\;\;\;$ Urbild von $M$\\
  68. $\rang(M)\;\;\;$ Rang von $M$\\
  69. $\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
  70. $\Delta^k\;\;\;$ Standard-Simplex\\
  71. $X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
  72. $d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
  73. $A \cong B\;\;\;$ $A$ ist isometrisch zu $B$
  74. \onecolumn
  75. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  76. % Zahlenmengen %
  77. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  78. \section*{Zahlenmengen}
  79. $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
  80. $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
  81. $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
  82. $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
  83. $\mdr^+\;$ Echt positive reele Zahlen\\
  84. $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
  85. $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
  86. $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
  87. $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
  88. $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
  89. $f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
  90. $\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
  91. $\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
  92. $\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
  93. $\kappa\;\;\;$ Krümmung\\
  94. $\kappa_{\ts{Nor}}$
  95. $V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}
  96. \index{Faser|see{Urbild}}
  97. \index{kongruent|see{isometrisch}}
  98. \index{Kongruenz|see{Isometrie}}