123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- %!TEX root = GeoTopo.tex
- \markboth{Symbolverzeichnis}{Symbolverzeichnis}
- \twocolumn
- \chapter*{Symbolverzeichnis}
- \addcontentsline{toc}{chapter}{Symbolverzeichnis}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Mengenoperationen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Mengenoperationen}
- $A^C\;\;\;$ Komplement der Menge $A$\\
- $\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
- $\overline{M}\;\;\;$ Abschluss der Menge $M$\\
- $\partial M\;\;\;$ Rand der Menge $M$\\
- $M^\circ\;\;\;$ Inneres der Menge $M$\\
- $A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
- $A \subseteq B\;\;\;$ Teilmengenbeziehung\\
- $A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
- $A \setminus B\;\;\;$ $A$ ohne $B$\\
- $A \cup B\;\;\;$ Vereinigung\\
- $A \dcup B\;\;\;$ Disjunkte Vereinigung\\
- $A \cap B\;\;\;$ Schnitt\\
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Geometrie %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Geometrie}
- $AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
- $\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
- $\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
- $\overline{AB} \cong \overline{CD}\;\;\;$ Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
- $|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Gruppen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Gruppen}
- $\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
- $\Iso(X)\;\;\;$ Isometriengruppe\\
- $\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
- $\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
- $\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
- $\Perm(X)\;\;\;$ Permutationsgruppe\\
- $\Sym(X)\;\;\;$ Symmetrische Gruppe
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Wege %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Wege}
- $\gamma: I \rightarrow X\;\;\;$ Ein Weg\\
- $[\gamma]\;\;\;$ Homotopieklasse von $\gamma$\\
- $\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
- $\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
- $\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
- $C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Weiteres %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Weiteres}
- $\fB\;\;\;$ Basis einer Topologie\\
- $\calS\;\;\;$ Subbasis einer Topologie\\
- $\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
- $\fT\;\;\;$ Topologie\\
- $\atlas\;\;\;$ Atlas\\
- $\praum\;\;\;$ Projektiver Raum\\
- $\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
- $X /_\sim\;\;\;$ $X$ modulo $\sim$\\
- $[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
- $\| x \|\;\;\;$ Norm von $x$\\
- $| x |\;\;\;$ Betrag von $x$\\
- $\langle a \rangle\;\;\;$ Erzeugnis von $a$\\
- $S^n\;\;\;$ Sphäre\\
- $T^n\;\;\;$ Torus\\
- $f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
- $\pi_X\;\;\;$ Projektion auf $X$\\
- $f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
- $f^{-1}(M)\;\;\;$ Urbild von $M$\\
- $\rang(M)\;\;\;$ Rang von $M$\\
- $\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
- $\Delta^k\;\;\;$ Standard-Simplex\\
- $X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
- $d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
- $A \cong B\;\;\;$ $A$ ist isometrisch zu $B$\\
- $f_*\;\;\;$ Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
- \onecolumn
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Zahlenmengen %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Zahlenmengen}
- $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
- $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
- $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
- $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
- $\mdr_+\;$ Echt positive reele Zahlen\\
- $\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
- $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
- $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
- $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
- $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
- $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
- $f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
- $\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
- $\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
- $\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
- $\kappa\;\;\;$ Krümmung\\
- $\kappa_{\ts{Nor}}\;\;\;$ Normalenkrümmung\\
- $V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Krümmung %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Krümmung}
- $D_p F: \mdr^2 \rightarrow \mdr^3\;\;\;$ Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
- $T_s S\;\;\;$ Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
- $d_s n(x)\;\;\;$ lineare Abbildung (siehe \cpageref{prop:5.1})\\
- \index{Faser|see{Urbild}}
- \index{kongruent|see{isometrisch}}
- \index{Kongruenz|see{Isometrie}}
|