venn-diagramm.tex 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. \documentclass{article}
  2. \usepackage[pdftex,active,tightpage]{preview}
  3. \setlength\PreviewBorder{2mm}
  4. \usepackage{tikz}
  5. \usetikzlibrary{shapes,decorations,calc}
  6. \usepackage{amsmath,amssymb}
  7. \begin{document}
  8. \begin{preview}
  9. \begin{tikzpicture}[%
  10. auto,
  11. example/.style={
  12. rectangle,
  13. draw=blue,
  14. thick,
  15. fill=blue!20,
  16. text width=4.5em,
  17. align=center,
  18. rounded corners,
  19. minimum height=2em
  20. },
  21. algebraicName/.style={
  22. text width=7em,
  23. align=center,
  24. minimum height=2em
  25. },
  26. explanation/.style={
  27. text width=10em,
  28. align=left,
  29. minimum height=3em
  30. }
  31. ]
  32. \draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.55) rectangle (13.4,-6.85);
  33. \draw[fill=black!20,black!20, rounded corners] ( 7.53,-1.40) rectangle (13.0,-6.45);
  34. \draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.45) rectangle (7.3,-6.75);
  35. \draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.40) rectangle (7.2,-6.65);
  36. \draw[fill=blue!20,blue!20, rounded corners] (-1.55,-3.55) rectangle (7.1,-6.55);
  37. \draw[fill=red!20,red!20, rounded corners] (-1.45,-4.65) rectangle (7.0,-6.45);
  38. \draw (0, 0) node[algebraicName] (A) {Gruppe}
  39. (2, 0) node[explanation] (B) {
  40. \begin{minipage}{0.90\textwidth}
  41. \tiny
  42. \begin{itemize}
  43. \itemsep -0.3em
  44. \item Assoziativit\"at
  45. \item Neutrales Element
  46. \item Inverse Elemente
  47. \end{itemize}
  48. \end{minipage}
  49. }
  50. (6, 0) node[example, draw=lime, fill=lime!15] (X) {$\text{GL}(n, \mathbb{K})$}
  51. (6,-1) node[example, draw=lime, fill=lime!15] (X) {$\text{O}(n)$}
  52. (0,-2) node[algebraicName, purple] (C) {abelsche Gruppe}
  53. (2,-2) node[explanation] (X) {
  54. \begin{minipage}{150\textwidth}
  55. \tiny
  56. \begin{itemize}
  57. \itemsep -0.3em
  58. \item kommutativ
  59. \end{itemize}
  60. \end{minipage}
  61. }
  62. (2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
  63. (4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
  64. (6, -3) node[example, draw=purple, fill=purple!15] (X) {$\mathbb{Z}_1$}
  65. (10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
  66. (12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
  67. (0,-4) node[algebraicName, blue] (H) {Ring}
  68. (2,-4.1) node[explanation] (X) {
  69. \begin{minipage}{150\textwidth}
  70. \tiny
  71. \begin{itemize}
  72. \itemsep -0.3em
  73. \item Zwei Verkn\"upfungen
  74. \item $(R, +)$ ist abelsche Gruppe
  75. \item $(R, \cdot)$ ist Halbgruppe
  76. \item Distributivgesetze
  77. \end{itemize}
  78. \end{minipage}
  79. }
  80. (6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
  81. (0,-5) node[algebraicName, red] (J) {K\"orper}
  82. (2,-5) node[explanation] (X) {
  83. \begin{minipage}{150\textwidth}
  84. \tiny
  85. \begin{itemize}
  86. \itemsep -0.3em
  87. \item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
  88. \end{itemize}
  89. \end{minipage}
  90. }
  91. (0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
  92. (2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
  93. (4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
  94. (6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
  95. (9, 0) node[algebraicName] (O) {Halbgruppe}
  96. (12,0) node[explanation] (X) {
  97. \begin{minipage}{150\textwidth}
  98. \tiny
  99. \begin{itemize}
  100. \itemsep -0.3em
  101. \item Eine Verkn\"upfung
  102. \item Abgeschlossenheit
  103. \end{itemize}
  104. \end{minipage}
  105. }
  106. (12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
  107. (9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
  108. (12,-2) node[explanation] (X) {
  109. \begin{minipage}{150\textwidth}
  110. \tiny
  111. \begin{itemize}
  112. \itemsep -0.3em
  113. \item kommutativ
  114. \end{itemize}
  115. \end{minipage}
  116. };
  117. % Körper
  118. \draw[red,thick, rounded corners] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
  119. % Ring
  120. \draw[blue, thick, rounded corners] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
  121. % abelsche Gruppe
  122. \draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
  123. % Gruppe
  124. \draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
  125. % Halbgruppe
  126. \draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
  127. % Halbgruppe
  128. \draw[black, thick, rounded corners] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
  129. \end{tikzpicture}
  130. \end{preview}
  131. \end{document}