| 123456789101112131415161718192021222324252627 |
- \chapter{Description of the Problem}
- Let $f: D \rightarrow \mdr$ with $D \subseteq \mdr$ be a polynomial function and $P \in \mdr^2$
- be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
- be the Euklidean distance of a point $P$ to a point $\left (x, f(x) \right )$
- on the graph of $f$:
- \[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
- Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for given $f$ and $P$:
- \[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
- But minimizing $d_{P,f}$ is the same as minimizing
- $d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
- \begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
- Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Then: $f'(x_0) = 0$.
- \end{theorem}
- Let $S_n$ be the function that returns the set of solutions for a
- polynomial of degree $n$ and a point:
- \[S_n: \Set{\text{Polynomials of degree } n \text{ defined on } \mdr} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})\]
- \[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)}\]
- If possible, I will explicitly give this function.
|