Kapitel2.tex 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2. % Henriekes Mitschrieb vom 07.11.2013 %
  3. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4. \chapter{Mannigfaltigkeiten und Simplizialkomplexe}
  5. \section{Topologische Mannigfaltigkeiten}
  6. \begin{definition}
  7. Sei $X$ ein topologischer Raum und $n \in \mdn$.
  8. \begin{defenum}
  9. \item Eine $n$-dimensionale \textbf{Karte}\xindex{Karte} auf
  10. $X$ ist ein Paar $(U, \varphi)$, wobei $U \subseteq X$
  11. offen und $\varphi: U \rightarrow V$ Homöomorphismus
  12. von $U$ auf eine offene Teilmenge $V \subseteq \mdr^n$.
  13. \item Ein $n$-dimensionaler \textbf{Atlas}\xindex{Atlas} $\atlas$ auf $X$ ist eine
  14. Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf $X$,
  15. sodass $\bigcup_{i \in I} U_i = X$.
  16. \item $X$ heißt (topologische) $n$-dimensionale \textbf{Mannigfaltigkeit}\xindex{Mannigfaltigkeit},
  17. wenn $X$ hausdorffsch ist, eine abzählbare Basis der
  18. Topologie hat und ein $n$-dimensionalen Atlas besitzt.
  19. \end{defenum}
  20. \end{definition}
  21. \begin{bemerkung}
  22. \begin{bemenum}
  23. \item Es gibt surjektive, stetige Abbildungen $[0,1] \rightarrow [0,1] \times [0,1]$
  24. \item Für $n \neq m$ sind $\mdr^n$ und $\mdr^m$ nicht homöomorph.
  25. Zum Beweis benutzt man den \enquote{Satz von der Gebietstreue} (Brouwer):
  26. Ist $U \subseteq \mdr^n$ offen und $f: U \rightarrow \mdr^n$
  27. stetig und injektiv, so ist $f(U)$ offen.
  28. Ist $n < m$ und $\mdr^m$ homöomorph zu $\mdr^n$, so wäre
  29. \[f:\mdr^n \rightarrow \mdr^m \rightarrow \mdr^n, \;\;\; (x_1, \dots, x_n) \mapsto (x_1, x_2, \dots, x_n, 0, \dots, 0)\]
  30. eine stetige injektive Abbildung. Also müsste $f(\mdr^n)$
  31. offen sein $\Rightarrow$ Widerspruch
  32. \end{bemenum}
  33. \end{bemerkung}
  34. \begin{beispiel}
  35. \begin{bspenum}
  36. \item Jede offene Teilmenge $U \subseteq \mdr^n$ ist eine
  37. $n$-dimensionale Mannigfaltigkeit mit einem Atlas aus
  38. einer Karte.
  39. \item $\mdc^n$ ist eine $2n$-dimensionale Mannigfaltigkeit
  40. mit einem Atlas aus einer Karte:
  41. \[(z_1, \dots, z_n) \mapsto (\Re(z_1), \Im(z_1), \dots, \Re(z_n), \Im(z_n))\]
  42. \item \xindex{Raum!projektiver}$\praum^n(\mdr) = (\mdr^{n+1} \setminus \Set{0})/_\sim = S^n /_\sim$ und $\praum^n(\mdc)$ sind Mannigfaltigkeiten
  43. der Dimension $n$ bzw. $2n$, da gilt:
  44. Sei $U_i := \Set{(x_0: \dots : x_n) \in \praum^n(\mdr) | x_i \neq 0}\;\forall i \in 0, \dots, n$.
  45. Dann ist $\praum^n(\mdr) = \bigcup_{i=0}^n U_i$ und die Abbildung
  46. \begin{align*}
  47. U_i &\rightarrow \mdr^n\\
  48. (x_0 : \dots : x_n) &\mapsto \left (\frac{x_0}{x_i}, \dots, \frac{x_i}{x_i}, \dots, \frac{x_n}{x_i} \right )\\
  49. (y_1 : \dots : y_{i-1} : 1 : y_i : \dots : y_n) &\mapsfrom (y_1, \dots, y_n)
  50. \end{align*}
  51. ist bijektiv.
  52. \todo[inline]{Was wird im Folgenden gemacht?}
  53. Die $U_i$ mit $i = 0, \dots, n$ bilden einen $n$-dimensionalen Atlas:
  54. \begin{align*}
  55. x &= (1:0:0) \in U_0 \rightarrow \mdr^2 & x &\mapsto (0,0)\\
  56. y &= (0:1:1) \in U_2 \rightarrow \mdr^2 & y &\mapsto (0,1)
  57. \end{align*}
  58. $\text{Umgebung: } \fB_1 (0,1) \rightarrow \Set{(1:u:v) | \|(u,v)\| < 1} = V_1$\\
  59. $\text{Umgebung: } \fB_1 (0,1) \rightarrow \Set{(w:z:1) | w^2 + z^2 < 1} = V_2$\\
  60. $V_1 \cap V_2 = \emptyset$?
  61. $(a:b:c) \in V_1 \cap V_2$\\
  62. $\Rightarrow a \neq 0$ und $(\frac{b}{a})^2 + (\frac{c}{a})^2 < 1 \Rightarrow \frac{c}{a} < 1$\\
  63. $\Rightarrow c \neq 0$ und $(\frac{a}{c})^2 + (\frac{b}{c})^2 < 1 \Rightarrow \frac{a}{c} < 1$\\
  64. $\Rightarrow$ Widerspruch
  65. \item $S^n = \Set{x \in \mdr^{n+1} | \|x\| = 1}$ ist $n$-dimensionale
  66. Mannigfaltigkeit.
  67. Karten: \\
  68. $O_i := \Set{(x_1, \dots, x_{n+1}) \in S^n | x_i > 0} \rightarrow \fB_1 (\underbrace{0, \dots, 0}_{\in \mdr^n})$\\
  69. $(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_i, \dots, x_{n+1})$\\
  70. $(x_1, \dots, x_{i-1}, \sqrt{1-\sum_{k=1}^n x_k^2}, x_i, \cdots, x_n)\mapsfrom (x_1, \dots, x_n)$\\
  71. $S^n = \bigcup_{i=1}^{n+1} (C_i \cup D_i)$
  72. \item $[0,1]$ ist keine Mannigfaltigkeit, denn:\\
  73. Es gibt keine Umgebung von $0$ in $[0,1]$, die homöomorph
  74. zu einem offenem Intervall ist.
  75. \item $V_1 = \Set{(x,y) \in \mdr^2 | x \cdot y = 0}$ ist
  76. keine Mannigfaltigkeit.
  77. Das Problem ist $(0,0)$. Wenn man diesen Punkt entfernt,
  78. zerfällt der Raum in 4 Zusammenhangskomponenten.
  79. Jeder $\mdr^n$ zerfällt jedoch in höchstens zwei
  80. Zusammenhangskomponenten, wenn man einen Punkt entfernt.
  81. \item $V_2 = \Set{(x,y) \in \mdr^2 | x^3 = y^2}$ ist eine
  82. Mannigfaltigkeit.
  83. \item $X = (\mdr \setminus \Set{0}) \cup (0_1, 0_2)$ \label{bsp:mannigfaltigkeit8}
  84. \[U \subseteq X \text{ offen } \gdw
  85. \begin{cases}
  86. U \text{ offen in } \mdr \setminus \Set{0}, &\text{falls } 0_1 \notin U, 0_2 \in U\\
  87. \exists \varepsilon > 0: (-\varepsilon, \varepsilon) \subseteq U &\text{falls } 0_1 \in U, 0_2 \in U
  88. \end{cases}\]
  89. Insbesondere sind $(\mdr \setminus \Set{0}) \cup \Set{0_1}$
  90. und $(\mdr \setminus \Set{0}) \cup \Set{0_2}$ offen und
  91. homöomorph zu $\mdr$.
  92. \underline{Aber:} $X$ ist nicht hausdorffsch!
  93. Denn es gibt keine disjunkten Umgebungen von $0_1$ und
  94. $0_2$.
  95. \item $\GL_n(\mdr)$ ist eine Mannigfaltigkeit der Dimension
  96. $n^2$, weil offene Teilmengen von $\mdr^{n^2}$ eine
  97. Mannigfaltigkeit bilden.
  98. \end{bspenum}
  99. \end{beispiel}
  100. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  101. % Mitschrieb vom 14.11.2013 %
  102. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  103. \begin{definition}\xindex{Verklebung}
  104. Seien $X, Y$ $n$-dimensionale Mannigfaltigkeiten, $U \subseteq X$
  105. und $V \subseteq Y$ offen, $\Phi: U \rightarrow V$ ein Homöomorphismus
  106. $Z = (X \dcup Y) /_\sim$ mit der von $u \sim \Phi(u)\;\forall{u \in U}$
  107. erzeugten Äquivalenzrelation und der von $\sim$ induzierten
  108. Quotiententopologie.
  109. $Z$ heißt \textbf{Verklebung} von $X$ und $Y$ längs $U$ und $V$.
  110. $Z$ besitzt einen Atlas aus $n$-dimensionalen Karten.
  111. Falls $Z$ hausdorffsch ist, ist $Z$ eine $n$-dimensionale
  112. Mannigfaltigkeit.
  113. \end{definition}
  114. \begin{bemerkung}
  115. Sind $X, Y$ Mannigfaltigkeiten der Dimension $n$ bzw. $m$, so ist
  116. $X \times Y$ eine Mannigfaltigkeit der Dimension $n+m$.
  117. \end{bemerkung}
  118. \begin{beweis}
  119. Produkte von Karten sind Karten. $\qed$
  120. \end{beweis}
  121. \begin{beispiel}
  122. Mannigfaltigkeiten mit Dimension 1:
  123. \begin{enumerate}[label=\arabic*)]
  124. \item Offene Intervalle, $\mdr$, $(0,1)$ sind alle homöomorph
  125. \item $S^1$
  126. \end{enumerate}
  127. Mannigfaltigkeiten mit Dimension 2:
  128. \begin{enumerate}[label=\arabic*)]
  129. \item $\mdr^2$
  130. \item $S^2$ (0 Henkel)
  131. \item $T^2$ (1 Henkel)
  132. \item oder mehr Henkel, wie z.B. der Zweifachtorus in \cref{fig:double-torus}
  133. \end{enumerate}
  134. \begin{figure}[htp]
  135. \centering
  136. \includegraphics[width=0.2\linewidth, keepaspectratio]{figures/Double-torus-illustration.png}
  137. \caption{Zweifachtorus}
  138. \label{fig:double-torus}
  139. \end{figure}
  140. \end{beispiel}
  141. \begin{bemerkung}
  142. Sei $n \in \mdn, F:\mdr^n \rightarrow \mdr$ stetig differenzierbar
  143. und $X = V(F) := \Set{x \in \mdr^n | F(x) = 0}$ das \enquote{vanishing set}\xindex{vanishing set}.
  144. Dann gilt:
  145. \begin{bemenum}
  146. \item $X$ ist abgeschlossen in $\mdr^n$
  147. \item Ist $\grad(F)(X) \neq 0 \;\;\;\forall{x \in X}$, so ist
  148. $X$ eine Mannigfaltigkeit der Dimension $n-1$. \label{bem:Mannigfaltigkeitskriterium}
  149. \end{bemenum}
  150. \end{bemerkung}
  151. \begin{beweis}\leavevmode
  152. \begin{enumerate}[label=\alph*),ref=\thedefinition.\alph*]
  153. \item Sei $y \in \mdr^n \setminus V(F)$. Weil $F$ stetig ist,
  154. gibt es $\delta > 0$, sodass $F(\fB_\delta(y)) \subseteq \fB_\varepsilon(F(y))$
  155. mit $\varepsilon = \frac{1}{2} \|F(y)\|$. Folgt
  156. $\fB_\delta(y) \cap V(F) = \emptyset \Rightarrow \mdr^n \setminus V(F)$
  157. ist offen.
  158. \item Sei $x \in X$ mit $\grad(F)(x) \neq 0$, also
  159. \obda $\frac{\partial F}{\partial X_1} (x) \neq 0$,
  160. $x = (x_1, \dots, x_n)$, $x' := (x_2, \dots, x_n) \in \mdr^{n-1}$.
  161. Der Satz von der impliziten Funktion liefert nun:
  162. Es gibt Umgebungen $U$ von $x'$ und differenzierbare
  163. Funktionen $g: U \rightarrow \mdr$, sodass
  164. $G: U \rightarrow \mdr^n, \; u \mapsto (g(u), u)$
  165. eine stetige Abbildung auf eine offene Umgebung $V$ von
  166. $x$ in $X$ ist.
  167. \end{enumerate}
  168. $\qed$
  169. \end{beweis}
  170. \begin{beispiel}\xindex{Neilsche Parabel}
  171. \begin{bspenum}
  172. \item $F: \mdr^3 \rightarrow \mdr,\;\;\; (x, y, z) \mapsto x^2 + y^2 + z^2 - 1$,
  173. $V(F) = S^2$, $\grad(F) = (2x, 2y, 2z) \xRightarrow{\crefabbr{bem:Mannigfaltigkeitskriterium}} S^n$
  174. ist $n$-dimensionale Mannigfaltigkeit in $\mdr^{n+1}$
  175. \item $F: \mdr^2 \rightarrow \mdr, \;\;\; (x,y) \mapsto y^2 - x^3$
  176. \begin{figure}[ht]
  177. \centering
  178. \subfloat[$F(x,y) = y^2 - x^3$]{
  179. \resizebox{0.45\linewidth}{!}{\input{figures/3d-function-semicubical-parabola.tex}}
  180. \label{fig:semicubical-parabola-2d}
  181. }%
  182. \subfloat[$y^2 - ax^3 = 0$]{
  183. \resizebox{0.45\linewidth}{!}{\input{figures/2d-semicubical-parabola.tex}}
  184. \label{fig:semicubical-parabola-3d}
  185. }%
  186. \label{Neilsche-Parabel}
  187. \caption{Rechts ist die Neilsche Parabel für verschiedene Parameter $a$.}
  188. \end{figure}
  189. Es gilt: $\grad(F) = (-3x^2, 2y)$. Also: $\grad(0,0) = (0,0)$.
  190. Daher ist \cref{bem:Mannigfaltigkeitskriterium}
  191. nicht anwendbar, aber $V(F)$ ist trotzdem
  192. eine 1-dimensionale topologische Mannigfaltigkeit.
  193. \end{bspenum}
  194. \end{beispiel}
  195. \begin{definition}\xindex{Mannigfaltigkeit!mit Rand}
  196. Sei $X$ ein Hausdorffraum mit abzählbarer Basis der Topologie.
  197. $X$ heißt $n$-dimensionale \textbf{Mannigfaltigkeit mit Rand},
  198. wenn es einen Atlas $(U_i, \varphi_i)$ gibt, wobei $U_i \subseteq X_i$
  199. offen und $\varphi_i$ ein Homöomorphismus auf eine offene
  200. Teilmenge von
  201. \[R_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_m \geq 0}\]
  202. ist. $R_{+,0}^n$ ist ein \enquote{Halbraum}.
  203. \end{definition}
  204. \begin{figure}[ht]
  205. \centering
  206. \subfloat[Halbraum]{
  207. \input{figures/topology-halfspace.tex}
  208. \label{fig:half-space}
  209. }%
  210. \subfloat[Pair of pants]{
  211. \resizebox{0.45\linewidth}{!}{\input{figures/topology-pair-of-pants.tex}}
  212. \label{fig:pair-of-pants}
  213. }%
  214. \subfloat[Sphäre mit einem Loch]{
  215. \resizebox{0.45\linewidth}{!}{\input{figures/topology-sphere-with-hole.tex}}
  216. \label{fig:sphere-with-hole}
  217. }%
  218. \label{Mannigfaltigkeiten mit Rand}
  219. \caption{Beispiele für Mannigfaltigkeiten mit Rand}
  220. \end{figure}
  221. \begin{definition}\xindex{Rand}
  222. Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Rand und
  223. Atlas $(U_i, \varphi_i)$. Dann heißt
  224. \[\partial X := \bigcup_{i\in I} \Set{x \in U_i | \varphi_i (x)_n = 0}\]
  225. \textbf{Rand} von $X$.
  226. \end{definition}
  227. $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
  228. \begin{definition}\xindex{Kartenwechsel}\index{Uebergangsfunktion@""Ubergangsfunktion|see{Kartenwechsel}}
  229. Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Atlas
  230. $(U_i, \varphi_i)_{i \in I}$
  231. Für $i, j \in I$ mit $U_i, U_j \neq \emptyset$ heißt
  232. \begin{align*}
  233. \varphi_{ij} &:= \varphi_j \circ \varphi_i^{-1}\\
  234. \varphi_i (U_i \cap U_j) &\rightarrow \varphi_j (U_i \cap U_j)
  235. \end{align*}
  236. \textbf{Kartenwechsel} oder \textbf{Übergangsfunktion}.
  237. \end{definition}
  238. \begin{figure}[htp]
  239. \centering
  240. \input{figures/topology-kartenwechsel.tex}
  241. \caption{Kartenwechsel}
  242. \label{fig:kartenwechsel}
  243. \end{figure}
  244. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  245. % Mitschrieb vom 19.11.2013 %
  246. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  247. \section{Differenzierbare Mannigfaltigkeiten}\label{sec:8}
  248. \begin{definition}
  249. Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$.
  250. \begin{defenum}
  251. \item $X$ heißt \textbf{differenzierbare Mannigfaltigkeit der Klasse $C^k$}\xindex{Mannigfaltigkeit!differenzierbare},
  252. wenn jede Kartenwechselabbildung $\varphi_{ij},\;i,j \in I$
  253. $k$-mal stetig differenzierbar ist.
  254. \item $X$ heißt \textbf{differenzierbare Mannigfaltigkeit}\xindex{Mannigfaltigkeit!glatte},
  255. wenn $X$ eine differenzierbare Mannigfaltigkeit der
  256. Klasse $C^\infty$ ist.
  257. \end{defenum}
  258. \end{definition}
  259. \begin{definition}
  260. Sei $X$ eine differenzierbare Mannigfaltigkeit der Klasse $C^k$
  261. ($k \in \mdn \cup \Set{\infty}$) mit Atlas $(U_i, \varphi_i)_{i \in I}$.
  262. \begin{defenum}
  263. \item Eine Karte $(U, \varphi)$ auf $X$ heißt \textbf{verträglich}\xindex{verträglich}
  264. mit $\atlas$, wenn alle Kartenwechsel $\varphi \circ \varphi_i^{-1}$
  265. und $\varphi_i \circ \varphi^{-1}$ ($i \in I$ mit $U_i \cap U \neq \emptyset$)
  266. differenzierbar von Klasse $C^k$ sind.
  267. \item Die Menge aller mit $\atlas$ verträglichen Karten auf
  268. $X$ bildet einen maximalen Atlas von Klasse $C^k$. Er
  269. heißt \textbf{$C^k$-Struktur}\xindex{Ck-Struktur@$C^k$-Struktur} auf $X$.
  270. Eine $C^\infty$-Struktur heißt auch \textbf{differenzierbare Struktur}\xindex{Struktur!differenzierbare}
  271. auf $X$.
  272. \end{defenum}
  273. \end{definition}
  274. \begin{bemerkung}
  275. Für $n \geq 4$ gibt es auf $S^n$ mehrere verschiedene differenzierbare
  276. Strukturen, die sog. \enquote{exotische Sphären}\xindex{Sphäre!exotische}.
  277. \end{bemerkung}
  278. \begin{definition}
  279. Seien $X, Y$ differenzierbare Mannigfaltigkeiten der Dimension
  280. $n$ bzw. $m$, $x \in X$.
  281. \begin{defenum}
  282. \item Eine stetige Abbildung $f:X \rightarrow Y$ heißt\label{def:stetigeAbbildungDiffbar}
  283. \textbf{differenzierbar}\xindex{Abbildung!differenzierbare}
  284. in $x$ (von Klasse $C^k$),
  285. wenn es Karten $(U, \varphi)$ von $X$ mit
  286. $x \in U$ und $(V, \psi)$ von $Y$ mit $f(U) \subseteq V$
  287. gibt, sodass $\psi \circ f \circ \varphi^{-1}$ stetig
  288. differenzierbar von Klasse $C^k$ in $\varphi(x)$ ist.
  289. \item $f$ heißt \textbf{differenzierbar}
  290. (von Klasse $C^k$), wenn $f$ in jedem $x \in X$
  291. differenzierbar ist.
  292. \item $f$ heißt \textbf{Diffeomorphismus}\xindex{Diffeomorphismus},
  293. wenn $f$ differenzierbar von Klasse $C^\infty$ ist und
  294. es eine differenzierbare Abbildung $g: Y \rightarrow X$
  295. von Klasse $C^\infty$ gibt mit $g \circ f = \id_X$
  296. und $f \circ g = \id_Y$.
  297. \end{defenum}
  298. \end{definition}
  299. \begin{bemerkung}
  300. Die Bedingung in \cref{def:stetigeAbbildungDiffbar} hängt nicht
  301. von den gewählten Karten ab.
  302. \end{bemerkung}
  303. \begin{beweis}
  304. Seien $(U', \varphi')$ und $(V', \psi')$ Karten von $X$ bzw. $Y$
  305. um $x$ bzw. $f(x)$ mit $f(U') \subseteq V'$.
  306. $\Rightarrow \psi' \circ f \circ (\varphi')^{-1}$\\
  307. $= \psi' \circ ( \psi^{-1} \circ \psi) \circ f \circ (\varphi^{-1} \circ \varphi ) \circ (\varphi')^{-1}$
  308. ist genau dann differenzierbar, wenn $\psi \circ f \circ \varphi^{-1}$
  309. differenzierbar ist.
  310. \end{beweis}
  311. \begin{beispiel}
  312. $f: \mdr \rightarrow \mdr, \;\;\; x \mapsto x^3$ ist kein
  313. Diffeomorphismus, aber Homöomorphismus, da mit $g(x) := \sqrt[3]{x}$
  314. gilt: $f \circ g = \id_\mdr, \;\;\; g \circ f = \id_\text{\mdr}$
  315. \end{beispiel}
  316. \begin{bemerkung}
  317. Sei $X$ eine glatte Mannigfaltigkeit. Dann ist
  318. \[\Diffeo(X) := \Set{f:X \rightarrow X | f \text{ ist Diffeomorphismus}}\]
  319. eine Untergruppe von $\Homoo(X)$.
  320. \end{bemerkung}
  321. \begin{definition}\label{def:8.5}
  322. $S \subseteq \mdr^3$ heißt \textbf{reguläre Fläche}\xindex{Fläche!reguläre} $:\gdw$
  323. $\forall s \in S\;\exists $ Umgebung $V(s) \subseteq \mdr^3$ $\exists U \subseteq \mdr^2$ offen:
  324. $\exists \text{ differenzierbare Abbildung } F: U \rightarrow V \cap S$:
  325. $\text{Rg}(J_F(u)) = 2\;\;\;\forall u \in U$.
  326. $F$ heißt (lokale) reguläre Parametrisierung von $S$.
  327. \begin{align*}
  328. F(u,v) &= \left (x(u,v), y(u,v), z(u,v) \right )\\
  329. J_F(u,v) &= \begin{pmatrix}
  330. \frac{\partial x}{\partial u} (p) & \frac{\partial x}{\partial v} (p)\\
  331. \frac{\partial y}{\partial u} (p) & \frac{\partial y}{\partial v} (p)\\
  332. \frac{\partial z}{\partial u} (p) & \frac{\partial z}{\partial v} (p)
  333. \end{pmatrix}
  334. \end{align*}
  335. \end{definition}
  336. \begin{beispiel}
  337. \begin{bspenum}
  338. \item Rotationsflächen: Sei $r:\mdr \rightarrow \mdr_{> 0}$
  339. eine differenzierbare Funktion.
  340. $F: \mdr^2 \rightarrow \mdr^3 \;\;\; (u,v) \mapsto (r(u) \cos (u), r(v) \sin(u), v)$
  341. \begin{figure}[htp]
  342. \centering
  343. \subfloat[Kugelkoordinaten]{
  344. \includegraphics[width=0.45\linewidth, keepaspectratio]{figures/spherical-coordinates.pdf}
  345. \label{fig:spherical-coordinates}
  346. }%
  347. \subfloat[Rotationskörper]{
  348. \resizebox{0.45\linewidth}{!}{\input{figures/solid-of-revolution.tex}}
  349. \label{fig:solid-of-revolution}
  350. }%
  351. \subfloat[Sinus und Kosinus haben keine gemeinsame Nullstelle]{
  352. \includegraphics[width=0.8\linewidth, keepaspectratio]{figures/sin-cos.pdf}
  353. \label{fig:sin-cos}
  354. }%
  355. \label{fig:example-image-gallery-1}
  356. %\caption{}
  357. \end{figure}
  358. \[J_F(u,v) =
  359. \begin{pmatrix}
  360. -r(v) \sin u & r'(v) \cos u\\
  361. r(v) \cos u & r'(v) \sin u\\
  362. 0 & 1
  363. \end{pmatrix}\]
  364. hat Rang 2 für alle $(u,v) \in \mdr^2$.
  365. \item Kugelkoordinaten: $F: \mdr^2 \rightarrow \mdr^3$,\\
  366. $(u, v) \mapsto (R \cos v \cos u, R \cos v \sin u, R \sin v)$\\
  367. Es gilt: $F(u,v) \in S_R^2$, denn
  368. \begin{align*}
  369. & R^2 \cos^2(v) \cos^2(u) + R^2 \cos^2(v) \sin^2(u) + R^2 \sin^2(v)\\
  370. =& R^2 (\cos^2(v) \cos^2(u) + \cos^2(v) \sin^2(u) + \sin^2(v))\\
  371. =& R^2 \left (\cos^2(v) (\cos^2(u) + \sin^2(u)) + \sin^2(v) \right)\\
  372. =& R^2 \left (\cos^2(v) + \sin^2(v) \right)\\
  373. =&R^2
  374. \end{align*}
  375. Die Jacobi-Matrix
  376. \[J_F(u,v) =
  377. \begin{pmatrix}
  378. -R \cos v \sin u & -R \sin v \cos u\\
  379. R \cos v \cos u & -R \sin v \sin u\\
  380. 0 & R \cos v
  381. \end{pmatrix}\]
  382. hat Rang 2 für $\cos v \neq 0$. In $N$ und $S$ ist
  383. $\cos v = 0$.
  384. \end{bspenum}
  385. \end{beispiel}
  386. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  387. % Mitschrieb vom 21.11.2013 %
  388. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  389. \begin{bemerkung}\label{kor:regular-surface-mannigfaltigkeit}
  390. Jede reguläre Fläche $S \subseteq \mdr^3$ ist eine 2-dimensionale,
  391. differenzierbare Mannigfaltigkeit.
  392. \end{bemerkung}
  393. \begin{beweis}
  394. \todo{Hier muss ich nochmals drüber lesen.}
  395. \underline{z.Z.:} $F_j^{-1} \circ F_i$ ist Diffeomorphismus
  396. \begin{figure}[htp]
  397. \centering
  398. \input{figures/topology-parametric-surface-mapping.tex}
  399. \caption{Reguläre Fläche $S$ zum Beweis von \cref{kor:regular-surface-mannigfaltigkeit}}
  400. \label{fig:parametric-surface-mapping}
  401. \end{figure}
  402. \underline{Idee:} Finde differenzierbare Funktion $\widetilde{F_j^{-1}}$
  403. in Umgebung $W$ von $s$, sodass $\widetilde{F_j^{-1}}|_{S \cap W} = F_j^{-1}$.
  404. \underline{Ausführung:} Sei $u_0 \in U_i$ mit $F_i(u_0) = s = F_j(v_0), v_0 \in U_j$.
  405. Da $\rang{J_{F_j}(v_0)} = 2$ ist, ist \obda
  406. \[\det
  407. \begin{pmatrix}
  408. \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\
  409. \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
  410. \end{pmatrix} (v_0) \neq 0
  411. \]
  412. und $F_j(u,v) = \left ( x(u,v), y(u,v), z(u,v) \right)$.
  413. Definiere $\widetilde{F_j}: U_j \times \mdr \rightarrow \mdr^3$ durch
  414. \[\widetilde{F_j} (u, v, t) = \left(x(u,v), y(u,v), z(u,v)+t \right )\]
  415. Offensichtlich: $\widetilde{F_j} |_{U_j \times \Set{0}} = F_j$
  416. \[J_{\widetilde{F_j}} =
  417. \begin{pmatrix}
  418. \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & 0\\
  419. \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & 0\\
  420. \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & 1
  421. \end{pmatrix} \Rightarrow \det J_{\widetilde{F_j}} (v_0, 0) \neq 0\]
  422. $\xRightarrow{\text{Analysis II}}$ Es gibt Umgebungen $W$ von
  423. $F_j$ von $\widetilde{F_j}(v_0, 0) = F_j(v_0) = s$, sodass $\widetilde{F_j}$
  424. auf $W$ eine differenzierbar Inverse $F_j^{-1}$ hat.
  425. Weiter ist $\widetilde{F_j}^{-1}|_{W \cap S} = F_j^{-1} |_{W \cap S}$
  426. $\Rightarrow F_j^{-1} \circ F_i |_{F_i^{-1} (W \cap S)} = F_j^{-1} \circ F_i |_{F_i^{-1} (W \cap S)}$
  427. ist differenzierbar.
  428. \end{beweis}
  429. \begin{definition}
  430. Sei $G$ eine Mannigfaltigkeit, $\circ: G \times G \rightarrow G$
  431. eine Abbildung, $(g,h) \mapsto g \cdot h$, sodass $(G, \circ)$
  432. eine Gruppe ist.
  433. \begin{defenum}
  434. \item $G$ heißt \textbf{topologische Gruppe}\xindex{Gruppe!topologische},
  435. wenn die Abbildungen $\circ: G \times G \rightarrow G$
  436. und $\iota: G \rightarrow G$.
  437. \[(g, h) \mapsto g \cdot h\;\;\; g \mapsto g^{-1}\]
  438. stetig sind.
  439. \item Ist $G$ eine differenzierbare Mannigfaltigkeit, so heißt
  440. $G$ \textbf{Lie-Gruppe}\xindex{Lie-Gruppe}, wenn
  441. $(G, \circ)$ und $(G, \iota)$ differenzierbar sind.
  442. \end{defenum}
  443. \end{definition}
  444. \begin{beispiel}[Lie-Gruppen]
  445. \begin{bspenum}
  446. \item Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.
  447. \item $\GL_n(\mdr)$
  448. \item $(\mdr^\times, \cdot)$
  449. \item $(\mdr_{>0}, \cdot)$
  450. \item $(\mdr^n, +)$, denn $A \cdot B (i,j) = \sum_{k=1}^n a_{ik} b_{kj}$ ist
  451. nach allen Variablen differenzierbar
  452. $(A^{-1}) (i,j) = \frac{\det(A_{ij})}{\det A}$
  453. \[A_{ij} = \begin{pmatrix}
  454. a_{i1} & \dots & a_{in}\\
  455. \vdots & \ddots & \vdots\\
  456. a_{n1} & \dots & a_{nn}
  457. \end{pmatrix} \in \mdr^{(n-1) \times (n-1)}\]
  458. ist differenzierbar.
  459. $\det A_{ij}$ kann $0$ werden, da:
  460. \[\begin{pmatrix}1 & 1\\-1&0\end{pmatrix}\]
  461. \item $\SL_n(\mdr) = \Set{A \in \GL_n(\mdr) | \det(A) = 1} $ \todo{Besser strukturieren}
  462. $\grad(\det-1)(A) = 0$?
  463. $\frac{\partial}{\partial a_{11}} (\det -1) = 1 \cdot \det A_{11}$
  464. Es gibt $i \in \Set{1, \dots, n}$ mit $\frac{\partial}{\partial a_{1i}} (\det -1) A \neq 0$
  465. \end{bspenum}
  466. \end{beispiel}
  467. \begin{bemerkung}
  468. Ist $G$ eine Lie-Gruppe, $g \in G$, so ist die Abbildung
  469. \begin{align*}
  470. l_g &: G \rightarrow G\\
  471. h &\mapsto g \cdot h
  472. \end{align*}
  473. ein Diffeomorphismus.
  474. \end{bemerkung}
  475. \section{Simplizialkomplex}
  476. \begin{definition}\xindex{Lage!allgemeine}
  477. Seien $v_0, \dots, v_k \in \mdr^n$ Punkte.
  478. \begin{defenum}
  479. \item $v_0, \dots, v_k$ sind \textbf{in allgemeiner Lage} $\gdw$ es gibt keinen $(k-1)$-dimensionalen
  480. affinen Untervektorraum, der $v_0, \dots, v_k$ enthält
  481. \gdw $v_1 - v_0, \dots, v_k - v_0$ sind linear abhängig.
  482. \item $\conv(v_0, \dots, v_k) = \Set{\sum_{i=0}^k \lambda_i v_i | \lambda_i \geq 0, \sum_{i=0}^k \lambda_i = 1} $
  483. \end{defenum}
  484. \end{definition}
  485. \begin{definition}
  486. \begin{defenum}
  487. \item Sei $\Delta^k = \conv(e_0, \dots, e_k) \subseteq \mdr^{n+1}$
  488. die konvexe Hülle der Standard-Basisvektoren $e_0, \dots, e_k$.
  489. Dann heißt $\Delta^k$ \textbf{Standard-Simplex}\xindex{Standard-Simplex}
  490. und $k$ die Dimension des Simplex.
  491. \item Für Punkte $v_0, \dots, v_k$ im $\mdr^n$ in allgemeiner
  492. Lage heißt $\delta (v_0, \dots, v_k) = \conv(v_0, \dots, v_k)$
  493. ein \textbf{$k$-Simplex}\xindex{Simplex} in $\mdr^n$.
  494. \item Ist $\Delta (v_0, \dots, v_k)$ ein $k$-Simplex und
  495. $I = \Set{i_0, \dots, i_r} \subseteq \Set{0, \dots, k}$,
  496. so heißt $s_{i_0, \dots, i_r} := \conv(v_{i_0}, \dots, v_{i_r})$
  497. \textbf{Teilsimplex}\xindex{Teilsimplex} oder \textbf{Seite}\xindex{Seite}
  498. von $\Delta$.
  499. $s_{i_0, \dots, i_r}$ ist $r$-Simplex.
  500. \end{defenum}
  501. \end{definition}
  502. \begin{figure}[ht]
  503. \centering
  504. \subfloat[0-Simplex $\Delta^0$]{
  505. \parbox{5cm}{\centering\input{figures/topology-simplex-0.tex}}
  506. \label{fig:simplex-0}
  507. }
  508. \subfloat[1-Simplex $\Delta^1$]{
  509. \input{figures/topology-simplex-1.tex}
  510. \label{fig:simplex-1}
  511. }%
  512. \subfloat[2-Simplex $\Delta^2$]{
  513. \input{figures/topology-simplex-2.tex}
  514. \label{fig:simplex-2}
  515. }%
  516. \subfloat[3-Simplex $\Delta^3$]{
  517. \input{figures/topology-simplex-3.tex}
  518. \label{fig:simplex-3}
  519. }%
  520. \label{fig:k-simplexe}
  521. \caption{Beispiele für $k$-Simplexe}
  522. \end{figure}
  523. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  524. % Mitschrieb vom 21.11.2013 %
  525. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  526. \begin{definition}
  527. \begin{enumerate}[label=\alph*),ref=\thedefinition.\alph*]
  528. \item Eine endliche Menge $K$ von Simplizes im $\mdr^n$
  529. heißt (endlicher) \textbf{Simplizialkomplex}\xindex{Simplizialkomplex},
  530. wenn gilt:
  531. \begin{enumerate}[label=(\roman*),ref=\theenumii.\roman*]
  532. \item Für $\Delta \in K$ und $S \subseteq \Delta$ Teilsimplex
  533. ist $S \in K$
  534. \item Für $\Delta_1, \Delta_2 \in K$ ist
  535. $\Delta_1 \cap \Delta_2$ leer oder ein
  536. Teilsimplex von $\Delta_1$ und von
  537. $\Delta_2$ \label{def:simplizialkomplex.ii}
  538. \end{enumerate}
  539. \item $|K| := \bigcup_{\Delta \in K} \Delta$ (mit Spurtopologie)
  540. heißt \textbf{geometrische Realisierung}\xindex{Realisierung!geometrische}
  541. von $K$.
  542. \item Ist $d = \max \Set{ k | K \text{ enthält } k-\text{Simplex}}$,
  543. so heißt $d$ \textbf{Dimension}\xindex{Dimension} von
  544. $K$.
  545. \end{enumerate}
  546. \end{definition}
  547. \xindex{Oktaeder}\xindex{Würfel}
  548. \begin{figure}[ht]
  549. \centering
  550. \subfloat[1D Simplizialkomplex]{
  551. \parbox[c][4cm]{3.5cm}{\centering\input{figures/topology-1-d-simplizialkomplex}}
  552. \label{fig:simplizialkomplex-1-d}
  553. }%
  554. \subfloat[2D Simplizialkomplex (ohne untere Fläche!)]{
  555. \parbox[c][4cm]{3.5cm}{\centering\input{figures/topology-pyramid.tex}}
  556. \label{fig:simplizialkomplex-2-d}
  557. }%
  558. \subfloat[2D Simplizialkomplex]{
  559. \parbox[c][4cm]{5cm}{\centering\input{figures/topology-oktaeder.tex}}
  560. \label{fig:simplizialkomplex-2-d-okateder}
  561. }%
  562. \subfloat[1D Simplizialkomplex]{
  563. \parbox[c][4cm]{5cm}{\centering\input{figures/topology-cube.tex}}
  564. \label{fig:simplizialkomplex-cube}
  565. }%
  566. \subfloat[2D Simplizialkomplex]{
  567. \parbox[c][4cm]{5cm}{\centering\input{figures/topology-cube-divided.tex}}
  568. \label{fig:simplizialkomplex-cube-divided}
  569. }
  570. \subfloat[$P$ ist kein Teilsimplex, da Eigenschaft \cref{def:simplizialkomplex.ii} verletzt ist]{
  571. \parbox[c][4cm]{5cm}{\centering\input{figures/topology-triangle-no-simplicial-complex.tex}}
  572. \label{fig:no-simplizialkomplex-triangles}
  573. }%
  574. \subfloat[Simplizialkomplex]{
  575. \parbox[c][4cm]{5cm}{\centering\input{figures/topology-triangle-simplicial-complex.tex}}
  576. \label{fig:simplizialkomplex-triangles}
  577. }%
  578. \label{fig:simplizialkomplexe}
  579. \caption{Beispiele für Simplizialkomplexe}
  580. \end{figure}
  581. \begin{definition}
  582. Seien $K, L$ Simplizialkomplexe. Eine stetige Abbildung
  583. \[f:|K| \rightarrow |L|\]
  584. heißt \textbf{simplizial}\xindex{Abbildung!simpliziale}, wenn für
  585. jedes $\Delta \in K$ gilt:
  586. \begin{defenum}
  587. \item $f(\Delta) \in L$
  588. \item $f|_{\Delta} : \Delta \rightarrow f(\Delta)$ ist eine
  589. affine Abbildung.
  590. \end{defenum}
  591. \end{definition}
  592. \begin{beispiel}
  593. \begin{bspenum}
  594. \item $\varphi(e_1) := b_1$, $\varphi(e_2) := b_2$\\
  595. $\varphi$ ist eine eindeutig bestimmte lineare Abbildung
  596. \input{figures/topology-linear-mapping.tex}
  597. \item Folgende Abbildung $\Delta^n \rightarrow \Delta^{n-1}$
  598. ist simplizial:
  599. \input{figures/topology-triangle-to-line.tex}
  600. \item \todo[inline]{Wozu dient das Beispiel?}
  601. \resizebox{0.9\linewidth}{!}{\input{figures/topology-2.tex}}
  602. \end{bspenum}
  603. \end{beispiel}
  604. \begin{definition}
  605. Sei $K$ ein endlicher Simplizialkomplex. Für $n \geq 0$ sei
  606. $a_n(K)$ die Anzahl der $n$-Simplizes in $K$.
  607. Dann heißt
  608. \[\chi(K) := \sum_{k=0}^{\dim K} (-1)^n a_n(K)\]
  609. \textbf{Eulerzahl}\xindex{Eulerzahl} (oder Euler-Charakteristik\index{Euler-Charakteristik|see{Eulerzahl}})
  610. von $K$.
  611. \end{definition}
  612. \begin{beispiel}
  613. \begin{bspenum}
  614. \item $\chi(\Delta^1) = 2 - 1 = 1$\\
  615. $\chi(\Delta^2) = 3 - 3 + 1 = 1$\\
  616. $\chi(\Delta^3) = 4 - 6 + 4 - 1 = 1$
  617. \item $\chi(\text{Oktaeder-Oberfläche}) = 6 - 12 + 8 = 2$\\
  618. $\chi(\text{Rand des Tetraeders}) = 2$\\
  619. $\chi(\text{Ikosaeder}) = 12 - 30 + 20 = 2$
  620. \item $\chi(\text{Würfel}) = 8 - 12 + 6 = 2$\\
  621. $\chi(\text{Würfel, unterteilt in Dreiecksflächen}) = 8 - (12 + 6) + (6 \cdot 2) = 2$
  622. \end{bspenum}
  623. \end{beispiel}
  624. \begin{bemerkung}
  625. $\chi(\Delta^n) = 1$ für jedes $n \in \mdn_0$
  626. \end{bemerkung}
  627. \begin{beweis}
  628. $\Delta^n$ ist die konvexe Hülle von $(e_0, \dots, e_n)$ in $\mdr^{n+1}$.
  629. Jede $(k+1)$-elementige Teilmenge von $\Set{e_0, \dots, e_n}$
  630. definiert ein $k$-Simplex.\\
  631. $\Rightarrow a_k(\Delta^n) = \binom{n+1}{k+1}, \;\;\; k = 0, \dots, n$\\
  632. $\Rightarrow \chi(\Delta^n) = \sum_{k=0}^n (-1)^k \binom{n+1}{k+1}$\\
  633. $f(x) = (x+1)^{n+1} \overset{\substack{\text{\tiny{Binomischer}}\\\text{\tiny{Lehrsatz}}}}{=} \sum_{k=0}^{n+1} \binom{n+1}{k} x^k$\\
  634. $\Rightarrow 0 = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^k = \chi(\Delta^n) -1$\\
  635. $\Rightarrow \chi(\Delta^n) = 1 \qed$
  636. \end{beweis}
  637. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  638. % Mitschrieb vom 28.11.2013 %
  639. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  640. \begin{definition}
  641. \begin{defenum}
  642. \item Ein 1D-Simplizialkomplex heißt \textbf{Graph}\xindex{Graph}.
  643. \item Ein Graph, der homöomorph zu $S^1$ ist, heißt \textbf{Kreis}\xindex{Kreis}.
  644. \item Ein zusammenhängender Graph heißt \textbf{Baum}\xindex{Baum},
  645. wenn er keinen Kreis enthält.
  646. \end{defenum}
  647. \end{definition}
  648. \begin{figure}[ht]
  649. \centering
  650. \subfloat[Dies wird häufig auch als Multigraph bezeichnet.]{
  651. \parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-simple.tex}}
  652. \label{fig:topology-graph-simple}
  653. }%
  654. \subfloat[Planare Einbettung des Tetraeders]{
  655. \parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-tetraeder.tex}}
  656. \label{fig:topology-graph-tetraeder}
  657. }
  658. \subfloat[$K_5$]{
  659. \parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-k-5.tex}}
  660. \label{fig:k-5}
  661. }%
  662. \subfloat[$K_{3,3}$]{
  663. \parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-k-3-3.tex}}
  664. \label{fig:k-3-3}
  665. }%
  666. \label{fig:graphen-beispiele}
  667. \caption{Beispiele für Graphen}
  668. \end{figure}
  669. \begin{bemerkung}
  670. Für jeden Baum $T$ gilt $\gamma(T) = 1$.
  671. \end{bemerkung}
  672. \begin{beweis}
  673. Induktion über die Anzahl der Ecken.
  674. \end{beweis}
  675. \begin{bemerkung}
  676. \begin{bemenum}
  677. \item Jeder zusammenhängende Graph $\Gamma$ enthält einen
  678. Teilbaum $T$, der alle Ecken von $\Gamma$ enthält.%
  679. \footnote{$T$ wird \enquote{Spannbaum} genannt.}
  680. \item Ist $n = a_1(\Gamma) = a_1(T)$, so ist $\chi(\Gamma) = 1 - n$.
  681. \end{bemenum}
  682. \end{bemerkung}
  683. \begin{beweis}\leavevmode
  684. \begin{enumerate}[label=\alph*),ref=\thedefinition.\alph*]
  685. \item Siehe \enquote{Algorithmus von Kruskal}.
  686. \item $\begin{aligned}[t]\chi(\Gamma) &= a_0(\Gamma) - a_1(\Gamma)\\
  687. &= a_0(\Gamma) - (n+a_1(T))\\
  688. &= a_0(T) - a_1(T) - n\\
  689. &= \chi(T) - n\\
  690. &= 1-n
  691. \end{aligned}$
  692. \end{enumerate}
  693. \end{beweis}
  694. \begin{bemerkung}\label{kor:simplex-unterteilung}
  695. Sei $\Delta$ ein $n$-Simplex und $x \in \Delta^\circ \subseteq \mdr^n$.
  696. Sei $K$ der Simplizialkomplex, der aus $\Delta$ durch
  697. \enquote{Unterteilung} in $x$ entsteht. Dann ist $\chi(K) = \chi(\Delta) = 1$.
  698. \end{bemerkung}
  699. \begin{figure}[ht]
  700. \centering
  701. \subfloat[$K$]{
  702. \parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area.tex}}
  703. \label{fig:topology-simplizial-complex-k}
  704. }%
  705. \subfloat[$\Delta$, das aus $K$ durch Unterteilung entsteht]{
  706. \parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area-2.tex}}
  707. \label{fig:topology-simplizial-complex-k-division}
  708. }%
  709. \label{fig:simplex-unterteilung-beispiel}
  710. \caption{Beispiel für \cref{kor:simplex-unterteilung}.}
  711. \end{figure}
  712. \begin{beweis}
  713. $\chi(K) = \chi(\Delta) - \underbrace{\underbrace{(-1)^n}_{n-\text{Simplex}} + \sum_{k=0}^n (-1)^k}_{(1+(-1))^{n+1}} = \chi(\Delta) \qed$
  714. \end{beweis}
  715. \begin{satz}[Eulersche Polyederformel]\xindex{Eulersche Polyederformel}
  716. Sei $P$ ein konvexes Polyeder in $\mdr^3$, d.~h. $\partial P$ ist
  717. ein 2-dimensionaler Simplizialkomplex, sodass gilt:
  718. \[\forall x,y \in \partial P: [x,y] \subseteq P\]
  719. Dann ist $\chi(\partial P) = 2$.
  720. \end{satz}
  721. \begin{beweis}\leavevmode
  722. \begin{enumerate}[label=\arabic*)]
  723. \item Die Aussage ist richtig für den Tetraeder.
  724. \item \Obda{} sei $0 \in P$ und $P \subseteq \fB_1(0)$. Projeziere
  725. $0P$ von $0$ aus auf $\partial \fB_1(0) = S^2$.
  726. Erhalte Triangulierung von $S^2$.
  727. \item Sind $P_1$ und $P_2$ konvexe Polygone und $T_1, T_2$
  728. die zugehörigen Triangulierungen von $S^2$, so gibt es
  729. eine eine Triangulierungen $T$, die sowohl um $T_1$ als
  730. auch um $T_2$ Verfeinerung ist.
  731. \begin{center}
  732. \centering
  733. \input{figures/topology-3.tex}\todo{Was bedeutet diese Zeichnung?}
  734. \end{center}
  735. Nach \cref{kor:simplex-unterteilung} ist
  736. $\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$,
  737. weil \obda{} $P_2$ ein Tetraeder ist.
  738. \end{enumerate}
  739. \end{beweis}
  740. \begin{bemerkung}[Der Rand vom Rand ist 0]\label{kor:9.11}
  741. Sei $K$ ein \todo{Warum in Klammern?}{(endlicher)} Simplizialkomplex mit Knotenmenge $V$
  742. und $<$ eine Totalordnung auf $V$.
  743. Sei $A_n$ die Menge der $n$-Simplizes in $K$, d.~h.
  744. \[A_n(K) := \Set{ \sigma \in K | \dim(\sigma) = n}\;\;\; \text{für } n=0, \dots, d=\dim(K)\]
  745. und $C_n(K)$ der $\mdr$-Vektorraum mit Basis $A_n(K)$, d.~h.
  746. \[C_n(K) = \Set{\sum_{\sigma \in A_n(K)} c_\sigma \cdot \sigma | c_\sigma \in \mdr}\]
  747. Sei $\sigma = \Delta(x_0, \dots, x_n) \in A_n(K)$, sodass
  748. $x_0 < x_1 < \dots < x_n$.
  749. Für $i = 0, \dots, n$ sei $\partial_i \sigma := \Delta(x_0, \dots, \hat{x_i}, \dots, x_n)$
  750. die $i$-te Seite von $\sigma$ und $d_\sigma = d_n \sigma := \sum_{i=0} (-1)^i \partial_i \sigma \in C_{n-1} (K)$
  751. und $d_n: C_n(K) \rightarrow C_{n-1}(K)$ die dadurch definierte lineare
  752. Abbildung.
  753. Dann gilt: $d_{n-1} \circ d_n = 0$
  754. \end{bemerkung}
  755. \begin{beispiel}
  756. \begin{figure}[h!]
  757. \centering
  758. \input{figures/topology-oriented-triangle.tex}
  759. \caption{TODO}
  760. \end{figure}
  761. $a < b < c$
  762. $d_2 \sigma = e_1 - e_2 + e_3 = (c - b) - (c-a) + (b - a) = 0$
  763. \todo[inline]{Beispiel auf Tetraeder übertragen}
  764. \end{beispiel}
  765. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  766. % Mitschrieb vom 03.12.2013 %
  767. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  768. \begin{beweis}
  769. Sei $\sigma \in A_n$. Dann gilt:
  770. \begin{align*}
  771. d_{n-1}(d_n \sigma) &= d_{n-1} (\sum_{i=0}^n (-1)^i \partial_i \sigma)\\
  772. &= \sum_{i=0}^n (-1)^i d_{n-1} (\partial_i \sigma)\\
  773. &= \sum_{i=0}^n (-1)^i \sum_{j=0}^{n-1} \partial_i (\partial_j \sigma) (-1)^j\\
  774. &= \sum_{0 \leq i \leq j \leq n-1} (-1)^{i+j} \partial_j (\partial_j (\sigma)) + \sum_{0 \leq j < i \leq n} (-1)^{i+j} \partial_{i-1} (\partial_j \sigma)\\
  775. &= 0
  776. \end{align*}
  777. weil jeder Summand aus der ersten Summe auch in der zweiten
  778. Summe vorkommt, aber mit umgekehrten Vorzeichen. $\qed$
  779. \end{beweis}
  780. \begin{definition}
  781. Sei $Z_n := \text{Kern}(d_n) \subseteq C_n$ und
  782. $B_n := \text{Bild}(d_{n+1}) \subseteq C_n$.
  783. \begin{defenum}
  784. \item $H_n = H_n(K, \mdr) := Z_n / B_n$ heißt $n$-te
  785. \textbf{Homotopiegruppe}\xindex{Homotopiegruppe} von $K$.
  786. \item $b_n(K) := \dim_{\mdr} H_n$ heißt $n$-te
  787. \textbf{Belti-Zahl}\xindex{Belit-Zahl} von $K$.
  788. \end{defenum}
  789. \end{definition}
  790. \begin{bemerkung}
  791. Nach \cref{kor:9.11} ist $B_n \subseteq Z_n$, denn
  792. $d_{n+1}(C) \in \text{Kern}(d_n)$ für $C \in C_{n+1}$.
  793. \end{bemerkung}
  794. \begin{minipage}{\textwidth}%don't break this theorem!
  795. \begin{satz}
  796. Für jeden endlichen Simplizialkomplex $K$ der Dimension $d$ gilt:
  797. \[\sum_{k=0}^d (-1)^k b_k (K) = \sum_{k=0}^d (-1)^k a_k(K) = \chi(K) \]
  798. \end{satz}
  799. \end{minipage}
  800. \begin{bemerkung}
  801. Es gilt \underline{nicht} $a_k = b_k\;\forall k \in \mdn_0$.
  802. \end{bemerkung}
  803. \begin{beweis}\leavevmode
  804. \begin{itemize}
  805. \item Dimensionsformel für $d_n$: $a_n = \dim Z_n + \dim B_{n-1}$ für $n \geq 1$
  806. \item Dimensionsformel für $Z_n \rightarrow H_n = Z_n / B_n: \dim Z_n = b_n + \dim B_n$
  807. \end{itemize}
  808. \begin{align*}
  809. \Rightarrow \sum_{k=0}^d (-1)^k a_k &= a_0 + \sum_{k=1}^d (-1)^k (\dim Z_k + \dim B_{k-1})\\
  810. &= a_0 + \sum_{k=1}^d (-1)^k \dim Z_k + \sum_{k=0}^d (-1)^{k+1} \dim B_{k-1}\\
  811. &= a_0 + \sum_{k=1}^d (-1)^k \dim Z_k - \sum_{k=0}^d (-1)^k \dim B_{k-1}\\
  812. &= a_0 + \sum_{k=1}^{d-1} (-1)^k b_k + (-1)^d \underbrace{\dim Z_d}_{= b_d} - \dim B_0\\
  813. &= b_0 + \sum_{k=1}^{d-1} (-1)^k b_k + (-1)^d b_d\\
  814. &= \sum_{k=0}^d (-1)^k b_k
  815. \end{align*}
  816. \end{beweis}
  817. % Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
  818. \input{Kapitel2-UB}