123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- \chapter{Linear function}
- \section{Defined on $\mdr$}
- Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
- $t \in \mdr$ be a linear function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north east,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin= 0, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
- \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
- \addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
- \addlegendentry{$f(x)=\frac{1}{2}x$}
- \addlegendentry{$f_\bot(x)=-2x+6$}
- \end{axis}
- \end{tikzpicture}
- \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
- \label{fig:linear-min-distance}
- \end{figure}
- Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
- slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
- \begin{align}
- f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
- \Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
- \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
- \end{align}
- The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
- is calculated this way:
- \begin{align}
- f(x) &= f_\bot(x)\\
- \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
- \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
- \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
- \end{align}
- There is only one point with minimal distance. I'll call the result
- from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
- the linear problem} and the function that gives this solution
- $S_1(f,P)$.
- See Figure~\ref{fig:linear-min-distance}
- to get intuition about the geometry used.
- \clearpage
- \section{Defined on a closed interval $[a,b] \subseteq \mdr$}
- Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
- $a \leq b$, $m \neq 0$ be a linear function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north east,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin= 0, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain= 2:3, thick,samples=50, red] {0.5*x};
- \addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
- \addplot[domain=1:1.5, thick, samples=50, orange] {3*x-3};
- \addplot[domain=4:5, thick, samples=50, green] {-x+5};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:1.5,1.5);
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:4,1);
- \addlegendentry{$f(x)=\frac{1}{2}x, D = [2,3]$}
- \addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$}
- \addlegendentry{$h(x)=3x-3, D=[1,1.5]$}
- \addlegendentry{$h(x)=-x+5, D=[4,5]$}
- \end{axis}
- \end{tikzpicture}
- \caption{Different situations when you have linear functions which
- are defined on a closed intervall}
- \label{fig:linear-min-distance-closed-intervall}
- \end{figure}
- The point with minimum distance can be found by:
- \[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
- S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
- \Set{a} &\text{if } S_1(f, P) \ni x < a\\
- \Set{b} &\text{if } S_1(f, P) \ni x > b
- \end{cases}\]
- \todo[inline]{argument? proof?}
|