| 1234567891011121314151617181920212223242526272829303132333435363738394041 |
- #!/usr/bin/env python
- import matplotlib.pyplot as plt
- import numpy
- import csv
- cov = [[25, 20], [20, 25]] # diagonal covariance, points lie on x or y-axis
- meanI = [70, 40]
- datapointsI = 2000
- meanII = [60, 20]
- datapointsII = 2000
- dataI = numpy.random.multivariate_normal(meanI, cov, datapointsI).T
- x, y = dataI
- plt.plot(x, y, 'x')
- dataII = numpy.random.multivariate_normal(meanII, cov, datapointsII).T
- x, y = dataII
- plt.plot(x, y, 'x')
- plt.axis('equal')
- plt.show()
- data = []
- xs, ys = dataI
- for x, y in zip(xs, ys):
- data.append([x, y, 'a'])
- xs, ys = dataII
- for x, y in zip(xs, ys):
- data.append([x, y, 'b'])
- # Write data to csv files
- with open("data.csv", 'wb') as csvfile:
- csvfile.write("x,y,label\n")
- spamwriter = csv.writer(csvfile, delimiter=',',
- quotechar='"', quoting=csv.QUOTE_MINIMAL)
- for datapoint in data:
- spamwriter.writerow(datapoint)
|