1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- \documentclass{article}
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[ngerman]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage{amssymb,amsmath,amsfonts} % nice math rendering
- \usepackage{braket} % needed for \Set
- \usepackage{caption}
- \usepackage{algorithm}
- \usepackage{xcolor}
- \usepackage[noend]{algpseudocode}
- \usepackage{mathtools,bm}
- \DeclareMathOperator*{\argmax}{arg\,max}
- \DeclareCaptionFormat{myformat}{#3}
- \captionsetup[algorithm]{format=myformat}
- \begin{document}
- \begin{preview}
- \begin{algorithm}[H]
- \begin{algorithmic}
- \Require
- \Statex Sates $\mathcal{X} = \{1, \dots, n_x\}$
- \Statex Actions $\mathcal{A} = \{1, \dots, n_a\},\qquad A: \mathcal{X} \Rightarrow \mathcal{A}$
- \Statex Reward function $R: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
- \Statex Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{X}$
- \Statex Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$
- \Statex Discounting factor $\gamma \in [0, 1]$
- \Statex $\lambda \in [0, 1]$: Trade-off between TD and MC
- \Procedure{QLearning}{$\mathcal{X}$, $A$, $R$, $T$, $\alpha$, $\gamma$, $\lambda$}
- \State Initialize $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ arbitrarily
- \State Initialize $e: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ with 0. \Comment{eligibility trace}
- % \State Start in state $s \in \mathcal{X}$
- \While{$Q$ is not converged}
- \State Select $(s, a) \in \mathcal{X} \times \mathcal{A}$ arbitrarily
- \While{$s$ is not terminal}
- \State $r \gets R(s, a)$
- \State $s' \gets T(s, a)$ \Comment{Receive the new state}
- \State Calculate $\pi$ based on $Q$ (e.g. epsilon-greedy)
- \State {$\color{red} a^* \gets \argmax_{\tilde{a}} Q(s', \tilde{a})$}
- \State $a' \gets \pi(s')$
- \State $e(s, a) \gets e(s, a) + 1$
- \State $\delta \gets r + \gamma \cdot Q(s', {\color{red} a^*}) - Q(s, a)$
- \For{$(\tilde{s}, \tilde{a}) \in \mathcal{X} \times \mathcal{A}$}
- \State $Q(\tilde{s}, \tilde{a}) \gets Q(\tilde{s}, \tilde{a}) + \alpha \cdot \delta \cdot e(\tilde{s}, \tilde{a})$
- \State ${\color{red} e(\tilde{s}, \tilde{a}) \gets \begin{cases}\gamma \cdot \lambda \cdot e(\tilde{s}, \tilde{a})&\text{if } a' = a^*\\
- 0 &\text{otherwise}\end{cases}}$
- \EndFor
- \State $s \gets s'$
- \State $a \gets a'$
- \EndWhile
- \EndWhile
- \Return $Q$
- \EndProcedure
- \end{algorithmic}
- \caption{SARSA($\lambda$): Learn function $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$}
- \label{alg:sarsa-lambda}
- \end{algorithm}
- \end{preview}
- \end{document}
|