| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- \documentclass[a4paper,10pt]{article}
- \usepackage{amssymb}
- \usepackage{amsmath}
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[ngerman]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- %layout
- \usepackage[margin=2.5cm]{geometry}
- \usepackage{parskip}
- \pdfinfo{
- /Author (Peter Merkert, Martin Thoma)
- /Title (Wichtige Formeln der Analysis I)
- /CreationDate (D:20120221095400)
- /Subject (Analysis I)
- /Keywords (Analysis I; Formeln)
- }
- \everymath={\displaystyle}
- \begin{document}
- \title{Analysis Formelsammlung}
- \author{Peter Merkert, Martin Thoma}
- \date{21. Februar 2012}
- \section{Grenzwerte}
- \begin{table}[ht]
- \begin{minipage}[b]{0.5\linewidth}\centering
- \begin{align*}
- \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
- \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
- \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
- \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
- \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
- \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
- \end{align*}
- \end{minipage}
- \hspace{0.5cm}
- \begin{minipage}[b]{0.5\linewidth}
- \centering
- \begin{align*}
- \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
- \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
- e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
- \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\
- \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
- 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
- \end{align*}
- \end{minipage}
- \end{table}
- \section{Zusammenhänge}
- \begin{align*}
- (\cos x)^2 + (\sin x)^2 &= 1 \\
- (\cosh x)^2 - (\sinh x)^2 &= 1 \\
- \tan x &= \frac {\sin x}{\cos x} \\
- \tanh x &= \frac {\sinh x}{\cosh x} \\
- (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
- \end{align*}
- \section{Ableitungen}
- \begin{align*}
- (\arctan x)' &= \frac {1}{1 + x^2} \\
- (\sin x)' &= \cos x \\
- (\cos x)' &= -\sin x \\
- (\text{arctanh} x)' &= \frac {1}{\sqrt {1 + x^2}}
- \end{align*}
- \section{Potenzreihen}
- Zuerst den Potenzradius r berechnen:
- \(
- r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}}
- \)
- \end{document}
|