Analysis_Wichtige_Formeln.tex 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. \documentclass[a4paper,10pt]{article}
  2. \usepackage{amssymb}
  3. \usepackage{amsmath}
  4. \usepackage[utf8]{inputenc} % this is needed for umlauts
  5. \usepackage[ngerman]{babel} % this is needed for umlauts
  6. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  7. %layout
  8. \usepackage[margin=2.5cm]{geometry}
  9. \usepackage{parskip}
  10. \pdfinfo{
  11. /Author (Peter Merkert, Martin Thoma)
  12. /Title (Wichtige Formeln der Analysis I)
  13. /CreationDate (D:20120221095400)
  14. /Subject (Analysis I)
  15. /Keywords (Analysis I; Formeln)
  16. }
  17. \everymath={\displaystyle}
  18. \begin{document}
  19. \title{Analysis Formelsammlung}
  20. \author{Peter Merkert, Martin Thoma}
  21. \date{21. Februar 2012}
  22. \section{Grenzwerte}
  23. \begin{table}[ht]
  24. \begin{minipage}[b]{0.5\linewidth}\centering
  25. \begin{align*}
  26. \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
  27. \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
  28. \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
  29. \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
  30. \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
  31. \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
  32. \end{align*}
  33. \end{minipage}
  34. \hspace{0.5cm}
  35. \begin{minipage}[b]{0.5\linewidth}
  36. \centering
  37. \begin{align*}
  38. \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
  39. \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
  40. e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
  41. \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\
  42. \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
  43. 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
  44. \end{align*}
  45. \end{minipage}
  46. \end{table}
  47. \section{Zusammenhänge}
  48. \begin{align*}
  49. (\cos x)^2 + (\sin x)^2 &= 1 \\
  50. (\cosh x)^2 - (\sinh x)^2 &= 1 \\
  51. \tan x &= \frac {\sin x}{\cos x} \\
  52. \tanh x &= \frac {\sinh x}{\cosh x} \\
  53. (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
  54. \end{align*}
  55. \section{Ableitungen}
  56. \begin{align*}
  57. (\arctan x)' &= \frac {1}{1 + x^2} \\
  58. (\sin x)' &= \cos x \\
  59. (\cos x)' &= -\sin x \\
  60. (\text{arctanh} x)' &= \frac {1}{\sqrt {1 + x^2}}
  61. \end{align*}
  62. \section{Potenzreihen}
  63. Zuerst den Potenzradius r berechnen:
  64. \(
  65. r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}}
  66. \)
  67. \end{document}