venn-diagramm.tex 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. \documentclass{article}
  2. \usepackage[pdftex,active,tightpage]{preview}
  3. \setlength\PreviewBorder{2mm}
  4. \usepackage{tikz}
  5. \usetikzlibrary{shapes,snakes,calc}
  6. \usepackage{amsmath,amssymb}
  7. \begin{document}
  8. \begin{preview}
  9. \begin{tikzpicture}[%
  10. auto,
  11. example/.style={
  12. rectangle,
  13. draw=blue,
  14. thick,
  15. fill=blue!20,
  16. text width=4.5em,
  17. align=center,
  18. rounded corners,
  19. minimum height=2em
  20. },
  21. algebraicName/.style={
  22. text width=7em,
  23. align=center,
  24. minimum height=2em
  25. },
  26. explanation/.style={
  27. text width=10em,
  28. align=left,
  29. minimum height=3em
  30. }
  31. ]
  32. \draw[fill=yellow!20,yellow!20] (-1.85, 0.55) rectangle (13.4,-6.85);
  33. \draw[fill=black!20,black!20] ( 7.53,-1.40) rectangle (13.0,-6.45);
  34. \draw[fill=lime!20,lime!20] (-1.75, 0.45) rectangle (7.3,-6.75);
  35. \draw[fill=purple!20,purple!20] (-1.65,-1.40) rectangle (7.2,-6.65);
  36. \draw[fill=blue!20,blue!20] (-1.55,-3.55) rectangle (7.1,-6.55);
  37. \draw[fill=red!20,red!20] (-1.45,-4.65) rectangle (7.0,-6.45);
  38. \draw (0, 0) node[algebraicName] (A) {Gruppe}
  39. (2, 0) node[explanation] (B) {
  40. \begin{minipage}{0.90\textwidth}
  41. \tiny
  42. \begin{itemize}
  43. \itemsep -0.3em
  44. \item Assoziativit\"at
  45. \item Neutrales Element
  46. \item Inverse Elemente
  47. \end{itemize}
  48. \end{minipage}
  49. }
  50. (0,-2) node[algebraicName] (C) {abelsche Gruppe}
  51. (2,-2) node[explanation] (X) {
  52. \begin{minipage}{150\textwidth}
  53. \tiny
  54. \begin{itemize}
  55. \itemsep -0.3em
  56. \item kommutativ
  57. \end{itemize}
  58. \end{minipage}
  59. }
  60. (2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
  61. (4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
  62. (10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
  63. (12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
  64. (0,-4) node[algebraicName] (H) {Ring}
  65. (2,-4.1) node[explanation] (X) {
  66. \begin{minipage}{150\textwidth}
  67. \tiny
  68. \begin{itemize}
  69. \itemsep -0.3em
  70. \item Zwei Verkn\"upfungen
  71. \item $(R, +)$ ist abelsche Gruppe
  72. \item $(R, \cdot)$ ist Halbgruppe
  73. \item Distributivgesetze
  74. \end{itemize}
  75. \end{minipage}
  76. }
  77. (6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
  78. (0,-5) node[algebraicName] (J) {K\"orper}
  79. (2,-5) node[explanation] (X) {
  80. \begin{minipage}{150\textwidth}
  81. \tiny
  82. \begin{itemize}
  83. \itemsep -0.3em
  84. \item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
  85. \end{itemize}
  86. \end{minipage}
  87. }
  88. (0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
  89. (2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
  90. (4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
  91. (6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
  92. (9, 0) node[algebraicName] (O) {Halbgruppe}
  93. (12,0) node[explanation] (X) {
  94. \begin{minipage}{150\textwidth}
  95. \tiny
  96. \begin{itemize}
  97. \itemsep -0.3em
  98. \item Eine Verkn\"upfung
  99. \item Abgeschlossenheit
  100. \end{itemize}
  101. \end{minipage}
  102. }
  103. (12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
  104. (9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
  105. (12,-2) node[explanation] (X) {
  106. \begin{minipage}{150\textwidth}
  107. \tiny
  108. \begin{itemize}
  109. \itemsep -0.3em
  110. \item kommutativ
  111. \end{itemize}
  112. \end{minipage}
  113. };
  114. % Körper
  115. \draw[red,thick] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
  116. % Ring
  117. \draw[blue, thick] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
  118. % abelsche Gruppe
  119. \draw[purple, thick] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
  120. % Gruppe
  121. \draw[lime, thick] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
  122. % Halbgruppe
  123. \draw[yellow, thick] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
  124. % Halbgruppe
  125. \draw[black, thick] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
  126. \end{tikzpicture}
  127. \end{preview}
  128. \end{document}