| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- \section*{Aufgabe 1}
- \paragraph{Gegeben:}
- \[A = \begin{pmatrix}
- 2 & 3 & -1\\
- -6 & -5 & 0\\
- 2 & -5 & 6
- \end{pmatrix},\;\;\; b = \begin{pmatrix}20\\-41\\-15\end{pmatrix}\]
- \paragraph{LR-Zerlegung:}
- \begin{align}
- &&A^{(0)} &= \begin{gmatrix}[p]
- 2 & 3 & -1\\
- -6 & -5 & 0\\
- 2 & -5 & 6
- \rowops
- \swap{0}{1}
- \end{gmatrix}\\
- P^{(1)} &= \begin{pmatrix}
- 0 & 1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 1
- \end{pmatrix}
- &A^{(1)} &=
- \begin{gmatrix}[p]
- -6 & -5 & 0\\
- 2 & 3 & -1\\
- 2 & -5 & 6
- \rowops
- \add[\cdot \frac{1}{3}]{0}{1}
- \add[\cdot \frac{1}{3}]{0}{2}
- \end{gmatrix}\\
- L^{(2)} &=\begin{pmatrix}
- 1 & 0 & 0\\
- \nicefrac{1}{3} & 1 & 0\\
- \nicefrac{1}{3} & 0 & 1
- \end{pmatrix},
- & A^{(2)} &= \begin{gmatrix}[p]
- -6 & -5 & 0\\
- 0 & \frac{4}{3} & -1\\
- 0 & -\frac{20}{3} & 6
- \rowops
- \swap{1}{2}
- \end{gmatrix}\\
- P^{(3)} &= \begin{pmatrix}
- 1 & 0 & 0\\
- 0 & 0 & 1\\
- 0 & 1 & 0
- \end{pmatrix},
- & A^{(3)} &= \begin{gmatrix}[p]
- -6 & -5 & 0\\
- 0 & -\frac{20}{3} & 6\\
- 0 & \frac{4}{3} & -1
- \rowops
- \add[\cdot \frac{1}{5}]{1}{2}
- \end{gmatrix}\\
- L^{(4)} &= \begin{pmatrix}
- 1 & 0 & 0\\
- 0 & 1 & 0\\
- 0 & \nicefrac{1}{5} & 1
- \end{pmatrix},
- & A^{(4)} &= \begin{gmatrix}[p]
- -6 & -5 & 0\\
- 0 & -\frac{20}{3} & 6\\
- 0 & 0 & \nicefrac{1}{5}
- \end{gmatrix} =:R
- \end{align}
- Es gilt nun:
- \begin{align}
- P :&= P^{(3)} \cdot P^{(1)}\\
- &= \begin{pmatrix}
- 1 & 0 & 0\\
- 0 & 0 & 1\\
- 0 & 1 & 0
- \end{pmatrix} \cdot \begin{pmatrix}
- 0 & 1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 1
- \end{pmatrix} \\
- &=
- \begin{pmatrix}
- 0 & 1 & 0\\
- 0 & 0 & 1\\
- 1 & 0 & 0
- \end{pmatrix}\\
- L^{(4)} \cdot P^{(3)} \cdot L^{(2)} \cdot P^{(1)} \cdot A &= R\\
- L^{-1} &= L^{(4)} \cdot \hat{L_1}\\
- \hat{L_1} &= P^{(3)} \cdot L^{(2)} \cdot (P^{(3)})^{-1}\\
- &= P^{(3)} \cdot L^{(2)} \cdot P^{(3)}\\
- &= \begin{pmatrix}
- 1 & 0 & 0\\
- \nicefrac{1}{3} & 1 & 0\\
- \nicefrac{1}{3} & 0 & 1
- \end{pmatrix}\\
- L &= (L^{(4)} \cdot \hat{L_1})^{-1}\\
- &= \begin{pmatrix}
- 1 & 0 & 0\\
- -\frac{1}{3} & 1 & 0\\
- -\frac{1}{3} & -\frac{1}{5} & 1
- \end{pmatrix}
- \end{align}
- Überprüfung mit \href{http://www.wolframalpha.com/input/?i=%7B%7B1%2C+0%2C+0%7D%2C+%7B-1%2F3%2C+1%2C+0%7D%2C+%7B-1%2F3%2C+-1%2F5%2C+1%7D%7D*%7B%7B-6%2C-5%2C0%7D%2C%7B0%2C-20%2F3%2C6%7D%2C%7B0%2C0%2C1%2F5%7D%7D}{Wolfram|Alpha}.
|