| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- \documentclass{article}
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage{amssymb,amsmath,amsfonts} % nice math rendering
- \usepackage{braket} % needed for \Set
- \usepackage{algorithm,algpseudocode}
- \begin{document}
- \begin{preview}
- \begin{itemize}
- \item $c:E \rightarrow \mathbb{R}_0^+$: capacity of an edge
- \item $e: V \rightarrow \mathbb{R}_0^+$: excess (too much flow in one node)
- \item $r_f: V \times V \rightarrow \mathbb{R}, \; r_f(u,v) := c(u,v) - f(u,v) $: remaining capacity
- \item $dist: V \rightarrow \mathbb{N}$: the label (imagine this as height)
- \end{itemize}
- \begin{algorithm}[H]
- \begin{algorithmic}
- \Function{PushRelabel}{Network $N(D, s, t, c)$}
- \ForAll{$(v,w) \in (V \times V \setminus E)$} \Comment{If an edge is not in $D=(V,E)$,}
- \State $c(v,w) \gets 0$ \Comment{then its capacity is 0}
- \EndFor
- \\
- \ForAll{$(v,w) \in V \times V$} \Comment{At the beginning, every edge}
- \State $f(v,w) \gets 0$ \Comment{has flow=0}
- \State $r_f(v,w) \gets c(v,w)$ \Comment{flow=max in the residualgraph}
- \EndFor
- \\
- \State $dist(s) \gets |V|$
- \ForAll{$v \in V \setminus \Set{s}$}
- \State $f(s,v) \gets c(s,v)$ \Comment{Push maximum flow out at the beginning}
- \State $r(v,s) \gets c(v,s) - f(v,s)$
- \State $dist(v) \gets 0$
- \State $e(v) \gets c(s,v)$ \Comment{$v$ has too much flow}
- \EndFor
- \\
- \While{$\exists v \in V:$ \Call{isActive}{$v$}}
- \If{\Call{isPushOk}{$v$}}
- \State \Call{Push}{$v$}
- \EndIf
- \If{\Call{isRelabelOk}{$v$}}
- \State \Call{Relabel}{$v$}
- \EndIf
- \EndWhile
- \\
- \State \Return $f$ \Comment{Maximaler Fluss}
- \EndFunction
- \\
- \Function{Push}{Node $v$, Node $w$}
- \State $\Delta \gets \min\Set{e(v), r_f(v,w)}$
- \State $f(v,w) \gets f(v,w) + \Delta$
- \State $f(w,v) \gets f(w,v) - \Delta$
- \State $r_f(v,w) \gets r_f(v,w) - \Delta$
- \State $r_f(w,v) \gets r_f(w,v) + \Delta$
- \State $e(v) \gets e(v) - \Delta$
- \State $e(w) \gets e(w) + \Delta$
- \EndFunction
- \\
- \Function{Relabel}{Node $v$}
- \If{$\Set{w \in V |r_f(v,w) > 0} == \emptyset$}
- \State $dist(v) \gets \infty$
- \Else
- \State $dist(v) \gets \min\Set{dist(w)+1|w \in V: r_f(v,w) > 0}$
- \EndIf
- \EndFunction
- \\
- \Function{isActive}{Node $v$}
- \State\Return $(e(v) > 0) \land (dist(v) < \infty)$
- \EndFunction
- \\
- \Function{isRelabelOk}{Node $v$}
- \State\Return \Call{isActive}{$v$} $\displaystyle \bigwedge_{w \in \Set{w \in V | r_f(v,w) >0}}(dist(v) \leq dist(w))$
- \EndFunction
- \\
- \Function{isPushOk}{Node $v$}
- \State\Return \Call{isActive}{$v$} $\land (e(v) > 0) \land (dist(v) == dist(w)+1)$
- \EndFunction
- \end{algorithmic}
- \caption{Algorithm of Goldberg and Tarjan}
- \label{alg:seq1}
- \end{algorithm}
- \end{preview}
- \end{document}
|