| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- \documentclass[a4paper]{scrartcl}
- \usepackage{amssymb, amsmath} % needed for math
- \usepackage{mathtools} % \xRightarrow
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[english]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage[margin=2.5cm]{geometry} %layout
- \usepackage{hyperref} % links im text
- \usepackage{braket} % needed for \Set
- \usepackage{parskip}
- \usepackage[colorinlistoftodos]{todonotes}
- \usepackage{pgfplots}
- \pgfplotsset{compat=1.7,compat/path replacement=1.5.1}
- \usepackage{tikz}
- \title{Minimal distance to a cubic function}
- \author{Martin Thoma}
- \hypersetup{
- pdfauthor = {Martin Thoma},
- pdfkeywords = {},
- pdftitle = {Minimal Distance}
- }
- \def\mdr{\ensuremath{\mathbb{R}}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Begin document %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{document}
- \maketitle
- \begin{abstract}
- In this paper I want to discuss how to find all points on a a cubic
- function with minimal distance to a given point.
- \end{abstract}
- \section{Description of the Problem}
- Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
- be a point. Let $d: \mdr^2 \times \mdr^2 \rightarrow \mdr_0^+$
- be the euklidean distance of two points:
- \[d \left ((x_1, y_1), (x_2, y_2) \right) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\]
- Now there is finite set of points $x_1, \dots, x_n$ such that
- \[\forall \tilde x \in \mathbb{R} \setminus \{x_1, \dots, x_n\}: d(P, (x_1, f(x_1))) = \dots = d(P, (x_n, f(x_n))) < d(P, (\tilde x, f(\tilde x)))\]
- \section{Minimal distance to a constant function}
- Let $f(x) = c$ with $c \in \mdr$ be a function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-5, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {1};
- \addplot[domain=-5:5, thick,samples=50, green] {2};
- \addplot[domain=-5:5, thick,samples=50, blue] {3};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
- \addlegendentry{$f(x)=1$}
- \addlegendentry{$g(x)=2$}
- \addlegendentry{$h(x)=3$}
- \end{axis}
- \end{tikzpicture}
- \caption{3 constant functions}
- \end{figure}
- Then $(x_P,f(x_P))$ has
- minimal distance to $P$. Every other point has higher distance.
- \section{Minimal distance to a linear function}
- Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
- $t \in \mdr$ be a function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north east,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin= 0, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
- \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \addlegendentry{$f(x)=\frac{1}{2}x$}
- \addlegendentry{$g(x)=-2x+6$}
- \end{axis}
- \end{tikzpicture}
- \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
- \end{figure}
- Now you can drop a perpendicular through $P$ on $f(x)$. The slope $f_\bot$
- of the perpendicular is $- \frac{1}{m}$. Then:
- \begin{align}
- f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
- \Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
- \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P\\
- f(x) &= f_\bot(x)\\
- \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
- \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
- \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
- \end{align}
- There is only one point with minimal distance.
- \clearpage
- \section{Minimal distance to a quadratic function}
- Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
- $b, c \in \mdr$ be a function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-3, % start the diagram at this x-coordinate
- xmax= 3, % end the diagram at this x-coordinate
- ymin=-0.25, % start the diagram at this y-coordinate
- ymax= 9, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- %xticklabels={-2,-1.6,...,7},
- %yticklabels={-8,-7,...,8},
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
- \addplot[domain=-3:3, thick,samples=50, green] {x*x};
- \addplot[domain=-3:3, thick,samples=50, blue] {x*x + x};
- \addplot[domain=-3:3, thick,samples=50, orange] {x*x + 2*x};
- \addplot[domain=-3:3, thick,samples=50, black] {-x*x + 6};
- \addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
- \addlegendentry{$f_2(x)=x^2$}
- \addlegendentry{$f_3(x)=x^2+x$}
- \addlegendentry{$f_4(x)=x^2+2x$}
- \addlegendentry{$f_5(x)=-x^2+6$}
- \end{axis}
- \end{tikzpicture}
- \caption{Quadratic functions}
- \end{figure}
- \subsection{Number of points with minimal distance}
- It is obvious that a quadratic function can have two points with
- minimal distance.
- For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
- has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.
- Obviously, there cannot be more than three points with minimal distance.
- But can there be three points?
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-0.7, % start the diagram at this x-coordinate
- xmax= 0.7, % end the diagram at this x-coordinate
- ymin=-0.25, % start the diagram at this y-coordinate
- ymax= 0.5, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- %xticklabels={-2,-1.6,...,7},
- %yticklabels={-8,-7,...,8},
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
- \draw (axis cs:0,0.5) circle[radius=0.5];
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
- \addlegendentry{$f(x)=x^2$}
- \end{axis}
- \end{tikzpicture}
- \caption{3 points with minimal distance?}
- \todo[inline]{Is this possible? http://math.stackexchange.com/q/553097/6876}
- \end{figure}
- As the point is already given, you want to minimize the following
- function:
- \begin{align}
- d: &\mdr \rightarrow \mdr^+_0\\
- d(x) &= \sqrt{(x_p,y_p),(x,f(x))}\\
- &= \sqrt{(x_p-x)^2 + (y_p - f(x))^2}\\
- &= \sqrt{x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2}
- \end{align}
- Minimizing $d$ is the same as minimizing $d^2$:
- \begin{align}
- d(x)^2 &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2\\
- (d(x)^2)' &= -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
- 0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'
- \end{align}
- Now we use thet $f(x) = ax^2 + bx + c$:
- \begin{align}
- 0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(2ax+b) + ((ax^2+bx+c)^2)'\\
- &= -2 x_p + 2x -2y_p \cdot 2ax-2 y_p b + (a^2 x^4+2 a b x^3+2 a c x^2+b^2 x^2+2 b c x+c^2)'\\
- &= -2 x_p + 2x -4y_p ax-2 y_p b + (4a^2 x^3 + 6 ab x^2 + 4acx + 2b^2 x + 2bc)\\
- &= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)\\
- \end{align}
- \subsubsection{Solutions}
- As the problem stated above is a cubic equation, you can solved it
- analytically. But the solutions are not very nice, so I've entered
- \texttt{$0=4*a^2 *x^3 + 6 *a*b *x^2 + 2*(1 -2*e *a+ 2*a*c + b^2)*x +2*(b*c-b*e-d)$}
- with $d := x_p$ and $e := y_p$.
- to \href{http://www.wolframalpha.com/input/?i=0%3D4*a%5E2+*x%5E3+%2B+6+*a*b+*x%5E2+%2B+2*%281+-2*e+*a%2B+2*a*c+%2B+b%5E2%29*x+%2B2*%28b*c-b*e-d%29}{WolframAlpha} to let it solve. The solutions are:
- \textbf{First solution}
- \begin{align*}
- x = &\frac{1}{6 \sqrt[3]{2} a^2} \sqrt[3]{(108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3})}\\
- &-\frac{12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2}
- {3 (2^{\frac{2}{3}}) a^2 \sqrt[3]{108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3}} }-b/(2 a)
- \end{align*}
- So the minimum for $a=1, b=c=d=0$ is:
- \subsection{Calculate points with minimal distance}
- \todo[inline]{Write this}
- \section{Minimal distance to a cubic function}
- Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ with $a \in \mdr \setminus \Set{0}$ and
- $b, c, d \in \mdr$ be a function.
- \subsection{Number of points with minimal distance}
- \todo[inline]{Write this}
- \subsection{Special points}
- \todo[inline]{Write this}
- \subsection{Voronoi}
- For $b^2 \geq 3ac$
- \todo[inline]{Write this}
- \subsection{Calculate points with minimal distance}
- \todo[inline]{Write this}
- \end{document}
|