123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- \documentclass{article}
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage{tikz}
- \usetikzlibrary{shapes,decorations,calc}
- \usepackage{amsmath,amssymb}
- \begin{document}
- \begin{preview}
- \begin{tikzpicture}[%
- auto,
- example/.style={
- rectangle,
- draw=blue,
- thick,
- fill=blue!20,
- text width=4.5em,
- align=center,
- rounded corners,
- minimum height=2em
- },
- algebraicName/.style={
- text width=7em,
- align=center,
- minimum height=2em
- },
- explanation/.style={
- text width=10em,
- align=left,
- minimum height=3em
- }
- ]
- \draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.55) rectangle (13.4,-6.85);
- \draw[fill=black!20,black!20, rounded corners] ( 7.53,-1.40) rectangle (13.0,-6.45);
- \draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.45) rectangle (7.3,-6.75);
- \draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.40) rectangle (7.2,-6.65);
- \draw[fill=blue!20,blue!20, rounded corners] (-1.55,-3.55) rectangle (7.1,-6.55);
- \draw[fill=red!20,red!20, rounded corners] (-1.45,-4.65) rectangle (7.0,-6.45);
- \draw (0, 0) node[algebraicName] (A) {Gruppe}
- (2, 0) node[explanation] (B) {
- \begin{minipage}{0.90\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item Assoziativit\"at
- \item Neutrales Element
- \item Inverse Elemente
- \end{itemize}
- \end{minipage}
- }
- (6, 0) node[example, draw=lime, fill=lime!15] (X) {$\text{GL}(n, \mathbb{K})$}
- (6,-1) node[example, draw=lime, fill=lime!15] (X) {$\text{O}(n)$}
- (0,-2) node[algebraicName, purple] (C) {abelsche Gruppe}
- (2,-2) node[explanation] (X) {
- \begin{minipage}{150\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item kommutativ
- \end{itemize}
- \end{minipage}
- }
- (2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
- (4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
- (6, -3) node[example, draw=purple, fill=purple!15] (X) {$\mathbb{Z}_1$}
- (10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
- (12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
- (0,-4) node[algebraicName, blue] (H) {Ring}
- (2,-4.1) node[explanation] (X) {
- \begin{minipage}{150\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item Zwei Verkn\"upfungen
- \item $(R, +)$ ist abelsche Gruppe
- \item $(R, \cdot)$ ist Halbgruppe
- \item Distributivgesetze
- \end{itemize}
- \end{minipage}
- }
- (6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
- (0,-5) node[algebraicName, red] (J) {K\"orper}
- (2,-5) node[explanation] (X) {
- \begin{minipage}{150\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
- \end{itemize}
- \end{minipage}
- }
- (0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
- (2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
- (4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
- (6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
- (9, 0) node[algebraicName] (O) {Halbgruppe}
- (12,0) node[explanation] (X) {
- \begin{minipage}{150\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item Eine Verkn\"upfung
- \item Abgeschlossenheit
- \end{itemize}
- \end{minipage}
- }
- (12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
- (9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
- (12,-2) node[explanation] (X) {
- \begin{minipage}{150\textwidth}
- \tiny
- \begin{itemize}
- \itemsep -0.3em
- \item kommutativ
- \end{itemize}
- \end{minipage}
- };
- % Körper
- \draw[red,thick, rounded corners] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
- % Ring
- \draw[blue, thick, rounded corners] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
- % abelsche Gruppe
- \draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
- % Gruppe
- \draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
- % Halbgruppe
- \draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
- % Halbgruppe
- \draw[black, thick, rounded corners] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
- \end{tikzpicture}
- \end{preview}
- \end{document}
|