123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- \documentclass{article}
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[ngerman]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage{amssymb,amsmath,amsfonts} % nice math rendering
- \usepackage{braket} % needed for \Set
- \usepackage{algorithm,algpseudocode}
- \usepackage{tikz}
- \usetikzlibrary{decorations.pathreplacing,calc}
- \newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
- \newcommand*{\AddNote}[4]{%
- \begin{tikzpicture}[overlay, remember picture]
- \draw [decoration={brace,amplitude=0.5em},decorate,very thick]
- ($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
- ($(#3)!(#2.south)!($(#3)-(0,1)$)$)
- node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
- \end{tikzpicture}
- }%
- \begin{document}
- \begin{preview}
- \begin{algorithm}[H]
- \begin{algorithmic}
- \Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
- \If{$a \geq p$ or $a < 0$}\Comment{Regel (III)}
- \State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{nun: $a \in [0, \dots, p-1]$}
- \ElsIf{$a \equiv 0 \mod p$} \Comment{Null-Fall}
- \State \Return 0
- \ElsIf{$a \equiv 1 \mod p$} \Comment{Eins-Fall}
- \State \Return 1
- \ElsIf{$a \equiv -1 \mod p$} \Comment{Regel (VI)}
- \If{$p \equiv 1 \mod 4$}
- \State \Return 1
- \Else
- \State \Return -1
- \EndIf
- \ElsIf{!$\Call{isPrime}{|a|}$} \Comment{Regel (II)}
- \State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
- \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, a}$ \Comment{nun: $a \in \mathbb{P}$}
- \ElsIf{$a == 2$} \Comment{Regel (VII)}
- \If{$a \equiv \pm 1 \mod 8$}
- \State \Return 1
- \Else
- \State \Return -1
- \EndIf \Comment{nun: $a \in \mathbb{P}, a \geq 3$}
- \ElsIf{$p == 3$} \Comment{Regel (IV)}
- \State $t \gets p \mod 3$
- \If{$t == 2$}
- \State $t \gets -1$
- \EndIf
- \State \Return $t$
- \Else
- \State \Return $(-1) \cdot \Call{CalculateLegendre}{p, a}$
- \EndIf
- \end{algorithmic}
- \caption{Calculate Legendre-Symbol}
- %\AddNote{top}{bottom}{right}{calclulate $p$ such that: $b^p \leq Z < b^{p+1}$} %\tikzmark{top},\tikzmark{right},\tikzmark{bottom}
- \label{alg:euclidBaseTransformation}
- \end{algorithm}
- \end{preview}
- \end{document}
|