topology-r-spiral-covering-s.tex 1.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. \documentclass{standalone}
  2. \usepackage{asymptote}
  3. \begin{document}
  4. \begin{asy}[width=10cm,height=10cm]
  5. import graph3;
  6. usepackage("amsfonts");
  7. size3(200);
  8. currentprojection=orthographic(4,6,3);
  9. // parametrization
  10. real x(real t) {return cos(2pi*t);}
  11. real y(real t) {return sin(2pi*t);}
  12. real z(real t) {return 0.5*t;}
  13. real z0(real t) {return 0;}
  14. scale(true);
  15. // some parameters
  16. real delta = 0.01;
  17. real phix = 0.1;
  18. real phim = 6.7;
  19. // spiral
  20. path3 spiral1 = graph(x,y,z,0.9,1,operator ..);
  21. draw(spiral1,dotted);
  22. path3 spiral2 = graph(x,y,z,1,phim,operator ..);
  23. draw(spiral2,Arrow3);
  24. // blue circle
  25. draw(unitcircle3, blue);
  26. // orange segments
  27. pen sp = orange+1;
  28. draw(graph(x,y,z0,phix-delta,phix+delta,operator ..),sp);
  29. for(real i=1; i<phim; ++i) {
  30. draw(graph(x,y,z,i+phix-delta,i+phix+delta,operator ..),sp);
  31. }
  32. // the dot x
  33. triple px = (x(phix),y(phix),0);
  34. dot(px);
  35. label("$x$",px,S);
  36. // axes and labels
  37. xaxis3("",red,Arrow3);
  38. yaxis3("",red,Arrow3);
  39. zaxis3("",red,Arrow3);
  40. label("$\mathbb{R}$",(1,-1,4));
  41. draw((-1,1,4)--(-1,1,1),Arrow3);
  42. label("$p$",(-1,1,2.5),E);
  43. label("$S^1$",(-1,1,0),W,blue);
  44. \end{asy}
  45. \end{document}