Symbolverzeichnis.tex 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. %!TEX root = Programmierparadigmen.tex
  2. \markboth{Symbolverzeichnis}{Symbolverzeichnis}
  3. \chapter*{Symbolverzeichnis}
  4. \addcontentsline{toc}{chapter}{Symbolverzeichnis}
  5. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6. % Reguläre Ausdrücke %
  7. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8. \section*{Reguläre Ausdrücke}
  9. % Set \mylengtha to widest element in first column; adjust
  10. % \mylengthb so that the width of the table is \columnwidth
  11. \settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$}
  12. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  13. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  14. $\emptyset$ & Leere Menge\\
  15. $\epsilon$ & Das leere Wort\\
  16. $\alpha, \beta$ & Reguläre Ausdrücke\\
  17. $L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\
  18. $L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\
  19. $L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\
  20. $L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\
  21. $\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\
  22. $\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\
  23. \end{xtabular}
  24. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  25. % Logik %
  26. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  27. \section*{Logik}
  28. \settowidth\mylengtha{$\mathcal{M} \models \varphi$}
  29. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  30. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  31. $\mathcal{M} \models \varphi$& Semantische Herleitbarkeit\newline Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\
  32. $\psi \vdash \varphi$ & Syntaktische Herleitbarkeit\newline Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\
  33. \end{xtabular}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. % Typinferenz %
  36. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  37. \section*{Typinferenz}
  38. \settowidth\mylengtha{$\tau \succeq \tau'$}
  39. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  40. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  41. $\Gamma \vdash t: \tau$ & Im Typkontext $\Gamma$ hat der Term $t$ den Typ $\tau$\\
  42. $a \Parr b$ & $a$ wird zu $b$ unifiziert\\
  43. $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
  44. \end{xtabular}
  45. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  46. % Weiteres %
  47. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  48. \section*{Weiteres}
  49. \settowidth\mylengtha{$\tau \succeq \tau'$}
  50. \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
  51. \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
  52. $\bot$ & Bottom\\
  53. $a \Parr b$ & $a$ wird zu $b$ unifiziert\\
  54. $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
  55. \end{xtabular}