1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- %!TEX root = Programmierparadigmen.tex
- \markboth{Symbolverzeichnis}{Symbolverzeichnis}
- \chapter*{Symbolverzeichnis}
- \addcontentsline{toc}{chapter}{Symbolverzeichnis}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Reguläre Ausdrücke %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Reguläre Ausdrücke}
- % Set \mylengtha to widest element in first column; adjust
- % \mylengthb so that the width of the table is \columnwidth
- \settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\emptyset$ & Leere Menge\\
- $\epsilon$ & Das leere Wort\\
- $\alpha, \beta$ & Reguläre Ausdrücke\\
- $L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\
- $L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\
- $L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\
- $L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\
- $\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\
- $\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Logik %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Logik}
- \settowidth\mylengtha{$\mathcal{M} \models \varphi$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\mathcal{M} \models \varphi$& Semantische Herleitbarkeit\newline Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\
- $\psi \vdash \varphi$ & Syntaktische Herleitbarkeit\newline Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Typinferenz %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Typinferenz}
- \settowidth\mylengtha{$\tau \succeq \tau'$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\Gamma \vdash t: \tau$ & Im Typkontext $\Gamma$ hat der Term $t$ den Typ $\tau$\\
- $a \Parr b$ & $a$ wird zu $b$ unifiziert\\
- $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
- \end{xtabular}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Weiteres %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section*{Weiteres}
- \settowidth\mylengtha{$\tau \succeq \tau'$}
- \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
- \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
- $\bot$ & Bottom\\
- $a \Parr b$ & $a$ wird zu $b$ unifiziert\\
- $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
- \end{xtabular}
|