123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- \chapter{Constant functions}
- \section{Defined on $\mdr$}
- \begin{lemma}
- Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
- Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
- minimal distance to $P$.
- \end{lemma}
- The situation can be seen in Figure~\ref{fig:constant-min-distance}.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-5, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {1};
- \addplot[domain=-5:5, thick,samples=50, green] {2};
- \addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
- \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
- \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
- \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
- \addlegendentry{$f(x)=1$}
- \addlegendentry{$g(x)=2$}
- \addlegendentry{$h(x)=3$}
- \end{axis}
- \end{tikzpicture}
- \caption{Three constant functions and their points with minimal distance}
- \label{fig:constant-min-distance}
- \end{figure}
- \begin{proof}
- The point $(x, f(x))$ with minimal distance can be calculated directly:
- \begin{align}
- d_{P,f}(x) &= \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\\
- &= \sqrt{(x^2 - 2x_P x + x_P^2) + (c^2 - 2 c y_P + y_P^2)} \\
- &= \sqrt{x^2 - 2 x_P x + (x_P^2 + c^2 - 2 c y_P + y_P^2)}\label{eq:constant-function-distance}\\
- \xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
- &= 2x - 2x_P\\
- \Leftrightarrow x &\stackrel{!}{=} x_P
- \end{align}
- So $(x_P,f(x_P))$ is the only point with minimal distance to $P$. $\qed$
- \end{proof}
- This result means:
- \[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
- \clearpage
- \section{Defined on a closed interval $[a,b] \subseteq \mdr$}
- \begin{theorem}[Solution formula for constant functions]
- Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
- $a \leq b$ be a constant function.
- Then the point $(x, f(x))$ of $f$ with minimal distance to $P$ is
- given by:
- \[\underset{x\in [a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
- S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
- \Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
- \Set{b} &\text{if } S_0(f,P) \ni x_P > b
- \end{cases}\]
- \end{theorem}
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north west,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin=-5, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:-2, thick,samples=50, red] {1};
- \addplot[domain=-1:3, thick,samples=50, green] {1.5};
- \addplot[domain=3:5, thick,samples=50, blue, densely dotted] {3};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(3, 3)};
- \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 1.5)};
- \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(-2, 1)};
- \draw[thick, dashed] (axis cs:2,1.5) -- (axis cs:2,2);
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:-2,1);
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:3,3);
- \addlegendentry{$f(x)=1, D = [-5,-2]$}
- \addlegendentry{$g(x)=1.5, D = [-1,3]$}
- \addlegendentry{$h(x)=3, D = [3,5]$}
- \end{axis}
- \end{tikzpicture}
- \caption{Three constant functions and their points with minimal distance}
- \label{fig:constant-min-distance-closed-intervall}
- \end{figure}
- \begin{proof}
- \begin{align}
- \underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
- &=\underset{x\in[a,b]}{\arg \min} \big ((x-x_P)^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
- &=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
- \end{align}
- which is optimal for $x = x_P$, but if $x_P \notin [a,b]$, you want
- to make this term as small as possible. It gets as small as possible when
- $x$ is as similar to $x_p$ as possible. This yields directly to the
- solution formula.$\qed$
- \end{proof}
|