123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- \chapter{Linear function}
- \section{Defined on $\mdr$}
- \begin{theorem}[Solution formula for linear functions on $\mdr$]
- Let $f: \mdr \rightarrow \mdr $ be a linear function
- $f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
- $t \in \mdr$ be a linear function.
- Then there is only one point $(x, f(x))$ on the graph of $f$ with
- minimal distance to $P = (x_P, y_P)$. This point is given by
- \[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\]
- \end{theorem}
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north east,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin= 0, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
- \addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \newcommand{\R}{0.9}
- \addplot [domain=0:2*pi,samples=50, dotted]({\R*cos(deg(x))+2},{\R*sin(deg(x))+2});
- \addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
- \addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
- \addlegendentry{$f(x)=\frac{1}{2}x$}
- \addlegendentry{$f_\bot(x)=-2x+6$}
- \end{axis}
- \end{tikzpicture}
- \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
- \label{fig:linear-min-distance}
- \end{figure}
- \begin{proof}
- With Theorem~\ref{thm:fermats-theorem} you get:
- \begin{align}
- 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
- &= 2(x-x_P) + 2 (f(x) - y_P)f'(x)\\
- \Leftrightarrow 0 &\stackrel{!}{=} x - x_P + (f(x) - y_P) f'(x)\\
- &= x- x_P + (mx+t - y_P)\cdot m\\
- &= x (m+1) + m(t-y_P) - x_P\\
- \Leftrightarrow x &\stackrel{!}{=} \frac{x_p - m(t-y_p)}{m^2+1}\\
- &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
- \end{align}
- It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
- has to be this minimum. $\qed$
- \end{proof}
- \clearpage
- \section{Defined on a closed interval $[a,b] \subseteq \mdr$}
- Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
- $a \leq b$, $m \neq 0$ be a linear function.
- \begin{figure}[htp]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- legend pos=north east,
- legend cell align=left,
- axis x line=middle,
- axis y line=middle,
- grid = major,
- width=0.8\linewidth,
- height=8cm,
- grid style={dashed, gray!30},
- xmin= 0, % start the diagram at this x-coordinate
- xmax= 5, % end the diagram at this x-coordinate
- ymin= 0, % start the diagram at this y-coordinate
- ymax= 3, % end the diagram at this y-coordinate
- axis background/.style={fill=white},
- xlabel=$x$,
- ylabel=$y$,
- tick align=outside,
- minor tick num=-3,
- enlargelimits=true,
- tension=0.08]
- \addplot[domain= 2:3, thick,samples=50, red] {0.5*x};
- \addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
- \addplot[domain=1:1.5, thick, samples=50, orange] {3*x-3};
- \addplot[domain=4:5, thick, samples=50, green] {-x+5};
- \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:1.5,1.5);
- \draw[thick, dashed] (axis cs:2,2) -- (axis cs:4,1);
- \addlegendentry{$f(x)=\frac{1}{2}x, D = [2,3]$}
- \addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$}
- \addlegendentry{$h(x)=3x-3, D=[1,1.5]$}
- \addlegendentry{$h(x)=-x+5, D=[4,5]$}
- \end{axis}
- \end{tikzpicture}
- \caption{Different situations when you have linear functions which
- are defined on a closed intervall}
- \label{fig:linear-min-distance-closed-intervall}
- \end{figure}
- The point with minimum distance can be found by:
- \[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
- S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
- \Set{a} &\text{if } S_1(f, P) \ni x < a\\
- \Set{b} &\text{if } S_1(f, P) \ni x > b
- \end{cases}\]
- If $S_1(f, P) \cap [a,b] \neq \emptyset$, then $\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = S_1(f,P) \cap [a,b]$,
- because $S_1(f,P)$ gives all global minima of $f$. Those are also
- minima for the intervall $[a,b]$. There are not more minima, because
- $S_1$ gives all minima of $P$ to $f$.
- If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
- But we can calculate the distance function:
- \begin{align}
- d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x) - y_P)^2}\\
- &= \sqrt{(x^2 - 2x x_P + x_P^2) + (mx + (t-y_P))^2}\\
- &= \sqrt{(x^2 - 2x x_P + x_P^2) + m^2 x^2 + 2mx(t-y_P) + (t-y_P)^2}\\
- &= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)}
- \end{align}
- This function (defined on $\mdr$) is symmetry to the axis
- \begin{align}
- x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\
- &= \frac{x_P - m(t-y_P)}{1+m^2}\\
- &= \frac{m}{m^2+1} (y_P + \frac{1}{m} x_P - t)
- \end{align}
- $f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and
- on $[x_S, + \infty)$ strictly monotonically increasing.
- Thus we can conclude:
- \[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
- \[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
- When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases:
- \begin{itemize}
- \item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$
- on the graph of $f$ to $P$.
- \item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
- on the graph of $f$ to $P$.
- \end{itemize}
|