quadratic-case-2.1.tex 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. $4 \alpha^3 + 27 \beta^2 \geq 0$:
  2. The first solution of $x^3 + \alpha x + \beta = 0$ is
  3. \[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
  4. Let's validate this solution:
  5. \allowdisplaybreaks
  6. \begin{align}
  7. 0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
  8. &= (\frac{t}{\sqrt[3]{18}})^3
  9. - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
  10. + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
  11. - (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
  12. + \frac{t \alpha}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha^2 }{t} + \beta\\
  13. &= \frac{t^3}{18}
  14. - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
  15. + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
  16. - \frac{\frac{2}{3} \alpha^3 }{t^3}
  17. + \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
  18. &= \frac{t^3}{18}
  19. - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
  20. + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
  21. - \frac{2 \alpha^3 }{3t^3}
  22. + \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
  23. &= \frac{t^3}{18}
  24. \color{blue} - \frac{t \alpha}{\sqrt[3]{18}}
  25. \color{red} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t}
  26. \color{black}- \frac{2 \alpha^3 }{3 t^3}
  27. \color{blue} + \frac{t \alpha }{\sqrt[3]{18}}
  28. \color{red} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t}
  29. \color{black}+ \beta\\
  30. &= \frac{t^3}{18} - \frac{2 \alpha^3 }{3 t^3} + \beta\\
  31. &= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
  32. \end{align}
  33. Now only go on calculating with the numerator. Start with resubstituting
  34. $t$:
  35. \begin{align}
  36. 0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
  37. &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -(2 \cdot 9)\cdot 9\beta^2\\
  38. &= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
  39. &= 0
  40. \end{align}