normal-distribution.tex 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. \documentclass[a4paper]{article}
  2. \usepackage[margin=20mm]{geometry}
  3. \usepackage[english]{babel}
  4. \usepackage[utf8]{inputenc}
  5. \usepackage{amssymb,amsmath}
  6. \usepackage{slashbox}
  7. \usepackage{booktabs}
  8. \usepackage[table,x11names]{xcolor}
  9. \usepackage{pgfplots}
  10. \setlength{\intextsep}{1pt}
  11. \begin{document}
  12. \pagenumbering{gobble}
  13. \section*{Cumulative distribution function (CDF) of the normal distribution}
  14. \pgfmathdeclarefunction{gauss}{3}{%
  15. \pgfmathparse{1/(#3*sqrt(2*pi))*exp(-((#1-#2)^2)/(2*#3^2))}%
  16. }
  17. \begin{figure}[!h]
  18. \centering
  19. \begin{tikzpicture}
  20. \begin{axis}[
  21. no markers,
  22. domain=0:6,
  23. samples=100,
  24. ymin=0,
  25. axis lines*=left,
  26. xlabel=$x$,
  27. every axis y label/.style={at=(current axis.above origin),anchor=south},
  28. every axis x label/.style={at=(current axis.right of origin),anchor=west},
  29. height=4cm,
  30. width=12cm,
  31. xtick=\empty,
  32. ytick=\empty,
  33. enlargelimits=false,
  34. clip=false,
  35. axis on top,
  36. grid = major,
  37. hide y axis
  38. ]
  39. \addplot [very thick,cyan!50!black] {gauss(x, 3, 1)};
  40. \pgfmathsetmacro\valueA{gauss(1,3,1)}
  41. \pgfmathsetmacro\valueB{gauss(2,3,1)}
  42. \draw [gray] (axis cs:1,0) -- (axis cs:1,\valueA)
  43. (axis cs:5,0) -- (axis cs:5,\valueA);
  44. \draw [gray] (axis cs:2,0) -- (axis cs:2,\valueB)
  45. (axis cs:4,0) -- (axis cs:4,\valueB);
  46. \draw [yshift=1.4cm, latex-latex](axis cs:2, 0) -- node [fill=white] {$0.683$} (axis cs:4, 0);
  47. \draw [yshift=0.3cm, latex-latex](axis cs:1, 0) -- node [fill=white] {$0.954$} (axis cs:5, 0);
  48. \node[below] at (axis cs:1, 0) {$\mu - 2\sigma$};
  49. \node[below] at (axis cs:2, 0) {$\mu - \sigma$};
  50. \node[below] at (axis cs:3, 0) {$\mu$};
  51. \end{axis}
  52. \end{tikzpicture}
  53. \end{figure}
  54. \begin{table}[!h]
  55. \centering
  56. \begin{tabular}{c|ccccc|ccccc}
  57. \toprule
  58. \backslashbox{$x$}{$\Delta x$} & \textbf{0.00} & \textbf{0.01} & \textbf{0.02} & \textbf{0.03} & \textbf{0.04} & \textbf{0.05} & \textbf{0.06} & \textbf{0.07} & \textbf{0.08} & \textbf{0.09} \\\midrule
  59. \rowcolor{lightgray}\textbf{0.0} & 0.5000 & 0.5040 & 0.5080 & 0.5120 & 0.5160 & 0.5199 & 0.5239 & 0.5279 & 0.5319 & 0.5359\\
  60. \textbf{0.1} & 0.5398 & 0.5438 & 0.5478 & 0.5517 & 0.5557 & 0.5596 & 0.5636 & 0.5675 & 0.5714 & 0.5753\\
  61. \textbf{0.2} & 0.5793 & 0.5832 & 0.5871 & 0.5910 & 0.5948 & 0.5987 & 0.6026 & 0.6064 & 0.6103 & 0.6141\\
  62. \textbf{0.3} & 0.6179 & 0.6217 & 0.6255 & 0.6293 & 0.6331 & 0.6368 & 0.6406 & 0.6443 & 0.6480 & 0.6517\\
  63. \textbf{0.4} & 0.6554 & 0.6591 & 0.6628 & 0.6664 & 0.6700 & 0.6736 & 0.6772 & 0.6808 & 0.6844 & 0.6879\\
  64. \rowcolor{lightgray}\textbf{0.5} & 0.6915 & 0.6950 & 0.6985 & 0.7019 & 0.7054 & 0.7088 & 0.7123 & 0.7157 & 0.7190 & 0.7224\\
  65. \textbf{0.6} & 0.7257 & 0.7291 & 0.7324 & 0.7357 & 0.7389 & 0.7422 & 0.7454 & 0.7486 & 0.7517 & 0.7549\\
  66. \textbf{0.7} & 0.7580 & 0.7611 & 0.7642 & 0.7673 & 0.7704 & 0.7734 & 0.7764 & 0.7794 & 0.7823 & 0.7852\\
  67. \textbf{0.8} & 0.7881 & 0.7910 & 0.7939 & 0.7967 & 0.7995 & 0.8023 & 0.8051 & 0.8078 & 0.8106 & 0.8133\\
  68. \textbf{0.9} & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389\\
  69. \rowcolor{lightgray}\textbf{1.0} & 0.8413 & 0.8438 & 0.8461 & 0.8485 & 0.8508 & 0.8531 & 0.8554 & 0.8577 & 0.8599 & 0.8621\\
  70. \textbf{1.1} & 0.8643 & 0.8665 & 0.8686 & 0.8708 & 0.8729 & 0.8749 & 0.8770 & 0.8790 & 0.8810 & 0.8830\\
  71. \textbf{1.2} & 0.8849 & 0.8869 & 0.8888 & 0.8907 & 0.8925 & 0.8944 & 0.8962 & 0.8980 & 0.8997 & 0.9015\\
  72. \textbf{1.3} & 0.9032 & 0.9049 & 0.9066 & 0.9082 & 0.9099 & 0.9115 & 0.9131 & 0.9147 & 0.9162 & 0.9177\\
  73. \textbf{1.4} & 0.9192 & 0.9207 & 0.9222 & 0.9236 & 0.9251 & 0.9265 & 0.9279 & 0.9292 & 0.9306 & 0.9319\\
  74. \rowcolor{lightgray}\textbf{1.5} & 0.9332 & 0.9345 & 0.9357 & 0.9370 & 0.9382 & 0.9394 & 0.9406 & 0.9418 & 0.9429 & 0.9441\\
  75. \textbf{1.6} & 0.9452 & 0.9463 & 0.9474 & 0.9484 & 0.9495 & 0.9505 & 0.9515 & 0.9525 & 0.9535 & 0.9545\\
  76. \textbf{1.7} & 0.9554 & 0.9564 & 0.9573 & 0.9582 & 0.9591 & 0.9599 & 0.9608 & 0.9616 & 0.9625 & 0.9633\\
  77. \textbf{1.8} & 0.9641 & 0.9649 & 0.9656 & 0.9664 & 0.9671 & 0.9678 & 0.9686 & 0.9693 & 0.9699 & 0.9706\\
  78. \textbf{1.9} & 0.9713 & 0.9719 & 0.9726 & 0.9732 & 0.9738 & 0.9744 & 0.9750 & 0.9756 & 0.9761 & 0.9767\\
  79. \rowcolor{lightgray}\textbf{2.0} & 0.9772 & 0.9778 & 0.9783 & 0.9788 & 0.9793 & 0.9798 & 0.9803 & 0.9808 & 0.9812 & 0.9817\\
  80. \textbf{2.1} & 0.9821 & 0.9826 & 0.9830 & 0.9834 & 0.9838 & 0.9842 & 0.9846 & 0.9850 & 0.9854 & 0.9857\\
  81. \textbf{2.2} & 0.9861 & 0.9864 & 0.9868 & 0.9871 & 0.9875 & 0.9878 & 0.9881 & 0.9884 & 0.9887 & 0.9890\\
  82. \textbf{2.3} & 0.9893 & 0.9896 & 0.9898 & 0.9901 & 0.9904 & 0.9906 & 0.9909 & 0.9911 & 0.9913 & 0.9916\\
  83. \textbf{2.4} & 0.9918 & 0.9920 & 0.9922 & 0.9925 & 0.9927 & 0.9929 & 0.9931 & 0.9932 & 0.9934 & 0.9936\\
  84. \rowcolor{lightgray}\textbf{2.5} & 0.9938 & 0.9940 & 0.9941 & 0.9943 & 0.9945 & 0.9946 & 0.9948 & 0.9949 & 0.9951 & 0.9952\\
  85. \textbf{2.6} & 0.9953 & 0.9955 & 0.9956 & 0.9957 & 0.9959 & 0.9960 & 0.9961 & 0.9962 & 0.9963 & 0.9964\\
  86. \textbf{2.7} & 0.9965 & 0.9966 & 0.9967 & 0.9968 & 0.9969 & 0.9970 & 0.9971 & 0.9972 & 0.9973 & 0.9974\\
  87. \textbf{2.8} & 0.9974 & 0.9975 & 0.9976 & 0.9977 & 0.9977 & 0.9978 & 0.9979 & 0.9979 & 0.9980 & 0.9981\\
  88. \textbf{2.9} & 0.9981 & 0.9982 & 0.9982 & 0.9983 & 0.9984 & 0.9984 & 0.9985 & 0.9985 & 0.9986 & 0.9986\\
  89. \rowcolor{lightgray}\textbf{3.0} & 0.9987 & 0.9987 & 0.9987 & 0.9988 & 0.9988 & 0.9989 & 0.9989 & 0.9989 & 0.9990 & 0.9990\\
  90. \textbf{3.1} & 0.9990 & 0.9991 & 0.9991 & 0.9991 & 0.9992 & 0.9992 & 0.9992 & 0.9992 & 0.9993 & 0.9993\\
  91. \textbf{3.2} & 0.9993 & 0.9993 & 0.9994 & 0.9994 & 0.9994 & 0.9994 & 0.9994 & 0.9995 & 0.9995 & 0.9995\\
  92. \textbf{3.3} & 0.9995 & 0.9995 & 0.9995 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9997\\
  93. \textbf{3.4} & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9998\\
  94. \rowcolor{lightgray}\textbf{3.5} & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998\\
  95. \textbf{3.6} & 0.9998 & 0.9998 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
  96. \textbf{3.7} & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
  97. \textbf{3.8} & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
  98. \textbf{3.9} & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000\\
  99. \bottomrule
  100. \end{tabular}
  101. \caption{Approximations of $\Phi_{0;1}(x + \Delta x)$}
  102. \end{table}
  103. \begin{align*}
  104. \Phi_{0;1}(x) &= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{- t^2 / 2} \mathrm{d} t &
  105. \Phi_{0;1}(1.65) &\approx 0.9505\\
  106. \Phi_{\mu; \sigma^2}(x) &= \Phi_{0;1} \left (\frac{x-\mu}{\sigma} \right ) &
  107. \Phi_{0;1}(-x) &= 1 - \Phi_{0;1}(x)
  108. \end{align*}
  109. \end{document}