1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- %!TEX root = thesis.tex
- %Term definitions
- \newacronym{ANN}{ANN}{artificial neural network}
- \newacronym{CSR}{CSR}{cursive script recognition}
- \newacronym{DTW}{DTW}{dynamic time warping}
- \newacronym{GTW}{GTW}{greedy time warping}
- \newacronym{HMM}{HMM}{hidden Markov model}
- \newacronym{HWR}{HWR}{handwriting recognition}
- \newacronym{HWRT}{HWRT}{handwriting recognition toolkit}
- \newacronym{MLP}{MLP}{multilayer perceptron}
- \newacronym{MSE}{MSE}{mean squared error}
- \newacronym{OOV}{OOV}{out of vocabulary}
- \newacronym{TDNN}{TDNN}{time delay neural network}
- \newacronym{PCA}{PCA}{principal component analysis}
- \newacronym{LDA}{LDA}{linear discriminant analysis}
- \newacronym{CROHME}{CROHME}{Competition on Recognition of Online Handwritten Mathematical Expressions}
- \newacronym{GMM}{GMM}{Gaussian mixture model}
- \newacronym{SVM}{SVM}{support vector machine}
- \newacronym{PyPI}{PyPI}{Python Package Index}
- \newacronym{CFM}{CFM}{classification figure of merit}
- \newacronym{CE}{CE}{cross entropy}
- \newacronym{GPU}{GPU}{graphics processing unit}
- \newacronym{CUDA}{CUDA}{Compute Unified Device Architecture}
- \newacronym{SLP}{SLP}{supervised layer-wise pretraining}
- \newacronym{AEP}{AEP}{auto-encoder pretraining}
- % Term definitions
- \newglossaryentry{Detexify}{name={Detexify}, description={A system used for
- on-line handwritten symbol recognition which is described in \cite{Kirsch}}}
- \newglossaryentry{epoch}{name={epoch}, description={During iterative training of a neural network, an \textit{epoch} is a single pass through the entire training set, followed by testing of the verification set.\cite{Concise12}}}
- \newglossaryentry{hypothesis}{
- name={hypothesis},
- description={The recognition results which a classifier returns is called a hypothesis. In other words, it is the \enquote{guess} of a classifier},
- plural=hypotheses
- }
- \newglossaryentry{reference}{
- name={reference},
- description={Labeled data is used to evaluate classifiers. Those labels are called references},
- }
- \newglossaryentry{YAML}{name={YAML}, description={YAML is a human-readable data format that can be used for configuration files}}
- \newglossaryentry{MER}{name={MER}, description={An error measure which combines symbols to equivalence classes. It was introduced on \cpageref{merged-error-introduction}}}
- \newglossaryentry{JSON}{name={JSON}, description={JSON, short for JavaScript Object Notation, is a language-independent data format that can be used to transmit data between a server and a client in web applications}}
- \newglossaryentry{hyperparamter}{name={hyperparamter}, description={A
- \textit{hyperparamter} is a parameter of a neural net, that cannot be learned,
- but has to be chosen}, symbol={\ensuremath{\theta}}}
- \newglossaryentry{learning rate}{name={learning rate}, description={A factor $0 \leq \eta \in \mdr$ that affects how fast new weights are learned. $\eta=0$ means that no new data is learned}, symbol={\ensuremath{\eta}}} % Andrew Ng: \alpha
- \newglossaryentry{learning rate decay}{name={learning rate decay}, description={The learning rate decay $0 < \alpha \leq 1$ is used to adjust the learning rate. After each epoch the learning rate $\eta$ is updated to $\eta \gets \eta \times \alpha$}, symbol={\ensuremath{\eta}}}
- \newglossaryentry{preactivation}{name={preactivation}, description={The preactivation of a neuron is the weighted sum of its input, before the activation function is applied}}
- \newglossaryentry{stroke}{name={stroke}, description={The path the pen took from
- the point where the pen was put down to the point where the pen was lifted first}}
- \newglossaryentry{line}{name={line}, description={Geometric object that is infinitely long
- and defined by two points.}}
- \newglossaryentry{line segment}{name={line segment}, description={Geometric object that has finite length
- and defined by two points.}}
- \newglossaryentry{symbol}{name={symbol}, description={An atomic semantic entity. A more detailed description can be found in \cref{sec:what-is-a-symbol}}}
- \newglossaryentry{weight}{name={weight}, description={A
- \textit{weight} is a parameter of a neural net, that can be learned}, symbol={\ensuremath{\weight}}}
- \newglossaryentry{control point}{name={control point}, description={A
- \textit{control point} is a point recorded by the input device.}}
|