glossary.tex 4.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. %!TEX root = thesis.tex
  2. %Term definitions
  3. \newacronym{ANN}{ANN}{artificial neural network}
  4. \newacronym{CSR}{CSR}{cursive script recognition}
  5. \newacronym{DTW}{DTW}{dynamic time warping}
  6. \newacronym{GTW}{GTW}{greedy time warping}
  7. \newacronym{HMM}{HMM}{hidden Markov model}
  8. \newacronym{HWR}{HWR}{handwriting recognition}
  9. \newacronym{HWRT}{HWRT}{handwriting recognition toolkit}
  10. \newacronym{MLP}{MLP}{multilayer perceptron}
  11. \newacronym{MSE}{MSE}{mean squared error}
  12. \newacronym{OOV}{OOV}{out of vocabulary}
  13. \newacronym{TDNN}{TDNN}{time delay neural network}
  14. \newacronym{PCA}{PCA}{principal component analysis}
  15. \newacronym{LDA}{LDA}{linear discriminant analysis}
  16. \newacronym{CROHME}{CROHME}{Competition on Recognition of Online Handwritten Mathematical Expressions}
  17. \newacronym{GMM}{GMM}{Gaussian mixture model}
  18. \newacronym{SVM}{SVM}{support vector machine}
  19. \newacronym{PyPI}{PyPI}{Python Package Index}
  20. \newacronym{CFM}{CFM}{classification figure of merit}
  21. \newacronym{CE}{CE}{cross entropy}
  22. \newacronym{GPU}{GPU}{graphics processing unit}
  23. \newacronym{CUDA}{CUDA}{Compute Unified Device Architecture}
  24. \newacronym{SLP}{SLP}{supervised layer-wise pretraining}
  25. \newacronym{AEP}{AEP}{auto-encoder pretraining}
  26. % Term definitions
  27. \newglossaryentry{Detexify}{name={Detexify}, description={A system used for
  28. on-line handwritten symbol recognition which is described in \cite{Kirsch}}}
  29. \newglossaryentry{epoch}{name={epoch}, description={During iterative training of a neural network, an \textit{epoch} is a single pass through the entire training set, followed by testing of the verification set.\cite{Concise12}}}
  30. \newglossaryentry{hypothesis}{
  31. name={hypothesis},
  32. description={The recognition results which a classifier returns is called a hypothesis. In other words, it is the \enquote{guess} of a classifier},
  33. plural=hypotheses
  34. }
  35. \newglossaryentry{reference}{
  36. name={reference},
  37. description={Labeled data is used to evaluate classifiers. Those labels are called references},
  38. }
  39. \newglossaryentry{YAML}{name={YAML}, description={YAML is a human-readable data format that can be used for configuration files}}
  40. \newglossaryentry{MER}{name={MER}, description={An error measure which combines symbols to equivalence classes. It was introduced on \cpageref{merged-error-introduction}}}
  41. \newglossaryentry{JSON}{name={JSON}, description={JSON, short for JavaScript Object Notation, is a language-independent data format that can be used to transmit data between a server and a client in web applications}}
  42. \newglossaryentry{hyperparamter}{name={hyperparamter}, description={A
  43. \textit{hyperparamter} is a parameter of a neural net, that cannot be learned,
  44. but has to be chosen}, symbol={\ensuremath{\theta}}}
  45. \newglossaryentry{learning rate}{name={learning rate}, description={A factor $0 \leq \eta \in \mdr$ that affects how fast new weights are learned. $\eta=0$ means that no new data is learned}, symbol={\ensuremath{\eta}}} % Andrew Ng: \alpha
  46. \newglossaryentry{learning rate decay}{name={learning rate decay}, description={The learning rate decay $0 < \alpha \leq 1$ is used to adjust the learning rate. After each epoch the learning rate $\eta$ is updated to $\eta \gets \eta \times \alpha$}, symbol={\ensuremath{\eta}}}
  47. \newglossaryentry{preactivation}{name={preactivation}, description={The preactivation of a neuron is the weighted sum of its input, before the activation function is applied}}
  48. \newglossaryentry{stroke}{name={stroke}, description={The path the pen took from
  49. the point where the pen was put down to the point where the pen was lifted first}}
  50. \newglossaryentry{line}{name={line}, description={Geometric object that is infinitely long
  51. and defined by two points.}}
  52. \newglossaryentry{line segment}{name={line segment}, description={Geometric object that has finite length
  53. and defined by two points.}}
  54. \newglossaryentry{symbol}{name={symbol}, description={An atomic semantic entity. A more detailed description can be found in \cref{sec:what-is-a-symbol}}}
  55. \newglossaryentry{weight}{name={weight}, description={A
  56. \textit{weight} is a parameter of a neural net, that can be learned}, symbol={\ensuremath{\weight}}}
  57. \newglossaryentry{control point}{name={control point}, description={A
  58. \textit{control point} is a point recorded by the input device.}}