12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- \documentclass[9pt,technote,a4paper]{IEEEtran}
- \usepackage{amssymb, amsmath} % needed for math
- \usepackage[a-1b]{pdfx}
- \usepackage{filecontents}
- \begin{filecontents*}{\jobname.xmpdata}
- \Keywords{recognition\sep machine learning\sep neural networks\sep symbols\sep multilayer perceptron}
- \Title{On-line Recognition of Handwritten Mathematical Symbols}
- \Author{Martin Thoma, Kevin Kilgour, Sebastian St{\"u}ker and Alexander Waibel}
- \Org{Institute for Anthropomatics and Robotics}
- \Doi{}
- \end{filecontents*}
- \RequirePackage{ifpdf}
- \ifpdf \PassOptionsToPackage{pdfpagelabels}{hyperref} \fi
- \RequirePackage{hyperref}
- \usepackage{parskip}
- \usepackage[pdftex,final]{graphicx}
- \usepackage{csquotes}
- \usepackage{braket}
- \usepackage{booktabs}
- \usepackage{multirow}
- \usepackage{pgfplots}
- \usepackage{wasysym}
- \usepackage{caption}
- % \captionsetup{belowskip=12pt,aboveskip=4pt}
- \makeatletter
- \newcommand\mynobreakpar{\par\nobreak\@afterheading}
- \makeatother
- \usepackage[noadjust]{cite}
- \usepackage[nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
- \usepackage[binary-units,group-separator={,}]{siunitx}
- \sisetup{per-mode=fraction,binary-units=true}
- \DeclareSIUnit\pixel{px}
- \usepackage{glossaries}
- \loadglsentries[main]{glossary}
- \makeglossaries
- \title{On-line Recognition of Handwritten Mathematical Symbols}
- \author{Martin Thoma, Kevin Kilgour, Sebastian St{\"u}ker and Alexander Waibel}
- \hypersetup{
- pdfauthor = {Martin Thoma\sep Kevin Kilgour\sep Sebastian St{\"u}ker\sep Alexander Waibel},
- pdfkeywords = {recognition\sep machine learning\sep neural networks\sep symbols\sep multilayer perceptron},
- pdfsubject = {Recognition},
- pdftitle = {On-line Recognition of Handwritten Mathematical Symbols},
- }
- \include{variables}
- \crefname{table}{Table}{Tables}
- \crefname{figure}{Figure}{Figures}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Begin document %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{document}
- \maketitle
- \begin{abstract}
- The automatic recognition of single handwritten symbols has three main
- applications: Supporting users who know how a symbol looks like, but not what
- its name is, providing the necessary commands for professional publishing, or
- as a building block for formula recognition.
- This paper presents a system which uses the pen trajectory to classify
- handwritten symbols. Five preprocessing steps, one data multiplication
- algorithm, five features and five variants for multilayer Perceptron training
- were evaluated using $\num{166898}$ recordings. Those recordings were made
- publicly available. The evaluation results of these 21~experiments were used to
- create an optimized recognizer which has a top-1 error of less than
- $\SI{17.5}{\percent}$ and a top-3 error of $\SI{4.0}{\percent}$. This is a
- relative improvement of $\SI{18.5}{\percent}$ for the top-1 error and
- $\SI{29.7}{\percent}$ for the top-3 error compared to the baseline system. This
- improvement was achieved by \acrlong{SLP} and adding new features. The
- improved classifier can be used via \href{http://write-math.com/}{write-math.com}.
- \end{abstract}
- \input{ch1-introduction}
- \input{ch2-general-system-design}
- \input{ch3-data-and-implementation}
- \input{ch4-algorithms}
- \input{ch5-optimization-of-system-design}
- \input{ch6-summary}
- \input{ch7-mfrdb-eval}
- \bibliographystyle{IEEEtranSA}
- \bibliography{write-math-ba-paper}
- \end{document}
|