write-math-ba-paper.tex 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. \documentclass[9pt,technote,a4paper]{IEEEtran}
  2. \usepackage{amssymb, amsmath} % needed for math
  3. \usepackage[a-1b]{pdfx}
  4. \usepackage{filecontents}
  5. \begin{filecontents*}{\jobname.xmpdata}
  6. \Keywords{recognition\sep machine learning\sep neural networks\sep symbols\sep multilayer perceptron}
  7. \Title{On-line Recognition of Handwritten Mathematical Symbols}
  8. \Author{Martin Thoma, Kevin Kilgour, Sebastian St{\"u}ker and Alexander Waibel}
  9. \Org{Institute for Anthropomatics and Robotics}
  10. \Doi{}
  11. \end{filecontents*}
  12. \RequirePackage{ifpdf}
  13. \ifpdf \PassOptionsToPackage{pdfpagelabels}{hyperref} \fi
  14. \RequirePackage{hyperref}
  15. \usepackage{parskip}
  16. \usepackage[pdftex,final]{graphicx}
  17. \usepackage{csquotes}
  18. \usepackage{braket}
  19. \usepackage{booktabs}
  20. \usepackage{multirow}
  21. \usepackage{pgfplots}
  22. \usepackage{wasysym}
  23. \usepackage{caption}
  24. % \captionsetup{belowskip=12pt,aboveskip=4pt}
  25. \makeatletter
  26. \newcommand\mynobreakpar{\par\nobreak\@afterheading}
  27. \makeatother
  28. \usepackage[noadjust]{cite}
  29. \usepackage[nameinlink,noabbrev]{cleveref} % has to be after hyperref, ntheorem, amsthm
  30. \usepackage[binary-units,group-separator={,}]{siunitx}
  31. \sisetup{per-mode=fraction,binary-units=true}
  32. \DeclareSIUnit\pixel{px}
  33. \usepackage{glossaries}
  34. \loadglsentries[main]{glossary}
  35. \makeglossaries
  36. \title{On-line Recognition of Handwritten Mathematical Symbols}
  37. \author{Martin Thoma, Kevin Kilgour, Sebastian St{\"u}ker and Alexander Waibel}
  38. \hypersetup{
  39. pdfauthor = {Martin Thoma\sep Kevin Kilgour\sep Sebastian St{\"u}ker\sep Alexander Waibel},
  40. pdfkeywords = {recognition\sep machine learning\sep neural networks\sep symbols\sep multilayer perceptron},
  41. pdfsubject = {Recognition},
  42. pdftitle = {On-line Recognition of Handwritten Mathematical Symbols},
  43. }
  44. \include{variables}
  45. \crefname{table}{Table}{Tables}
  46. \crefname{figure}{Figure}{Figures}
  47. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  48. % Begin document %
  49. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  50. \begin{document}
  51. \maketitle
  52. \begin{abstract}
  53. The automatic recognition of single handwritten symbols has three main
  54. applications: Supporting users who know how a symbol looks like, but not what
  55. its name is, providing the necessary commands for professional publishing, or
  56. as a building block for formula recognition.
  57. This paper presents a system which uses the pen trajectory to classify
  58. handwritten symbols. Five preprocessing steps, one data multiplication
  59. algorithm, five features and five variants for multilayer Perceptron training
  60. were evaluated using $\num{166898}$ recordings. Those recordings were made
  61. publicly available. The evaluation results of these 21~experiments were used to
  62. create an optimized recognizer which has a top-1 error of less than
  63. $\SI{17.5}{\percent}$ and a top-3 error of $\SI{4.0}{\percent}$. This is a
  64. relative improvement of $\SI{18.5}{\percent}$ for the top-1 error and
  65. $\SI{29.7}{\percent}$ for the top-3 error compared to the baseline system. This
  66. improvement was achieved by \acrlong{SLP} and adding new features. The
  67. improved classifier can be used via \href{http://write-math.com/}{write-math.com}.
  68. \end{abstract}
  69. \input{ch1-introduction}
  70. \input{ch2-general-system-design}
  71. \input{ch3-data-and-implementation}
  72. \input{ch4-algorithms}
  73. \input{ch5-optimization-of-system-design}
  74. \input{ch6-summary}
  75. \input{ch7-mfrdb-eval}
  76. \bibliographystyle{IEEEtranSA}
  77. \bibliography{write-math-ba-paper}
  78. \end{document}