cnn.py 564 B

1234567891011121314151617181920
  1. import data
  2. from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
  3. from keras.models import Sequential, load_model
  4. model = Sequential()
  5. model.add(Conv2D(16, (3, 3)))
  6. model.add(MaxPooling2D(pool_size=(2, 2)))
  7. model.add(Conv2D(16, (3, 3)))
  8. model.add(Flatten())
  9. model.add(Dense(128, activation='relu'))
  10. model.add(Dense(data.n_classes, activation='softmax'))
  11. model.compile(loss='categorical_crossentropy', optimizer='adam')
  12. model.fit(data.x_train, data.y_train)
  13. model.save('model.h5')
  14. model = load_model('model.h5')
  15. y_predicted = model.predict(data.x_test)