Vortrag-Martin.tex 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. \documentclass[hyperref={pdfpagelabels=false},usepdftitle=false]{beamer}
  2. \usetheme{Frankfurt} % see http://deic.uab.es/~iblanes/beamer_gallery/index_by_theme.html as fallback
  3. \usecolortheme{beaver}
  4. \usefonttheme{professionalfonts}
  5. \usepackage{hyperref}
  6. \usepackage[utf8]{inputenc} % this is needed for german umlauts
  7. \usepackage[english]{babel} % this is needed for german umlauts
  8. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  9. \usepackage{tikz}
  10. \usepackage{incgraph}
  11. \beamertemplatenavigationsymbolsempty
  12. % Begin:Move navigation from top to bottom
  13. \setbeamertemplate{navigation symbols}{}
  14. \makeatletter
  15. \setbeamertemplate{footline}
  16. {%
  17. \pgfuseshading{beamer@barshade}%
  18. \ifbeamer@sb@subsection%
  19. \vskip-9.75ex%
  20. \else%
  21. \vskip-7ex%
  22. \fi%
  23. \begin{beamercolorbox}[ignorebg,ht=2.25ex,dp=3.75ex]{section in head/foot}
  24. \insertnavigation{\paperwidth}
  25. \end{beamercolorbox}%
  26. \ifbeamer@sb@subsection%
  27. \begin{beamercolorbox}[ignorebg,ht=2.125ex,dp=1.125ex,%
  28. leftskip=.3cm,rightskip=.3cm plus1fil]{subsection in head/foot}
  29. \usebeamerfont{subsection in head/foot}\insertsubsectionhead
  30. \end{beamercolorbox}%
  31. \fi%
  32. }%
  33. \setbeamertemplate{headline}{%
  34. }
  35. \makeatother
  36. % End:Move navigation from top to bottom
  37. \begin{document}
  38. \title{Art in Machine Learning}
  39. \subtitle{\href{https://github.com/MartinThoma/}{github.com/MartinThoma/}}
  40. \author{Martin Thoma}
  41. \date{15. Januar 2016}
  42. \subject{Machine Learning}
  43. \frame{\titlepage}
  44. \section{Examples}
  45. \subsection{Examples}
  46. \incgraph{0099.jpg}
  47. \section{ML-Basics}
  48. \subsection{ML-Basics}
  49. \begin{frame}{Was ist Machine Learning?}
  50. \begin{block}{Definition by Tom Mitchell: ML}
  51. A computer program is said to learn from \textbf{experience} $E$ with
  52. respect to some class of \textbf{tasks} $T$ and \textbf{performance
  53. measure} $P$, if its performance at tasks in $T$, as measured by $P$,
  54. improves with experience $E$.
  55. \end{block}
  56. \end{frame}
  57. \end{document}